Research on the Detection and Tracking of Moving Objects in Dynamic Scenes

Bowen Cheng, Shuai Jiang, Yalong Pang, Shenshen Luan, Jing Lu
{"title":"Research on the Detection and Tracking of Moving Objects in Dynamic Scenes","authors":"Bowen Cheng, Shuai Jiang, Yalong Pang, Shenshen Luan, Jing Lu","doi":"10.1109/CCPQT56151.2022.00028","DOIUrl":null,"url":null,"abstract":"Aiming at the poor robustness of the moving objects detection and tracking algorithm in the dynamic scenes, a new moving objects tracking algorithm in the dynamic scenes is proposed, which combines the optical flow method and Kalman predictor, can solve the occlusion problem in target tracking. The optical flow method solves the detection of the moving objects problem, and the Kalman predictor is used to complete the moving target prediction and association. The experimental results show that, the proposed algorithm can work well in the stationary scenes and the dynamic scenes, and the accuracy of detection of moving objects in dynamic scenes is more effective than the optical flow method only.","PeriodicalId":235893,"journal":{"name":"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPQT56151.2022.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the poor robustness of the moving objects detection and tracking algorithm in the dynamic scenes, a new moving objects tracking algorithm in the dynamic scenes is proposed, which combines the optical flow method and Kalman predictor, can solve the occlusion problem in target tracking. The optical flow method solves the detection of the moving objects problem, and the Kalman predictor is used to complete the moving target prediction and association. The experimental results show that, the proposed algorithm can work well in the stationary scenes and the dynamic scenes, and the accuracy of detection of moving objects in dynamic scenes is more effective than the optical flow method only.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态场景中运动目标的检测与跟踪研究
针对动态场景下运动目标检测与跟踪算法鲁棒性差的问题,提出了一种结合光流法和卡尔曼预测器的动态场景下运动目标跟踪算法,解决了目标跟踪中的遮挡问题。光流法解决了运动目标的检测问题,利用卡尔曼预测器完成运动目标的预测和关联。实验结果表明,该算法在静态场景和动态场景下都能很好地工作,并且在动态场景中对运动物体的检测精度比光流法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Spaceborne Integrated High-performance Processing and Computing Platform Based on SpaceVPX An Integrated Formal Description Method for Network Attacks TD3-based Algorithm for Node Selection on Multi-tier Federated Learning An Ultra-wideband Adjustable Pulse Generator Design A Multi-class image reranking algorithm based on multiple discrete-time quantum walk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1