Fast conjugate gradient algorithm extension for analyzer-based imaging reconstruction

Oriol Caudevilla, J. Brankov
{"title":"Fast conjugate gradient algorithm extension for analyzer-based imaging reconstruction","authors":"Oriol Caudevilla, J. Brankov","doi":"10.1117/12.2217164","DOIUrl":null,"url":null,"abstract":"This paper presents an extension of the classic Conjugate Gradient Algorithm. Motivated by the Analyzer-Based Imaging inverse problem, the novel method maximizes the Poisson regularized log-likelihood with a non-linear transformation of parameter faster than other solutions. The new approach takes advantage of the special properties of the Poisson log-likelihood to conjugate each ascend direction with respect all the previous directions taken by the algorithm. Our solution is compared with the general solution for non-quadratic unconstrained problems: the Polak- Ribiere formula. Both methods are applied to the ABI reconstruction problem.","PeriodicalId":228011,"journal":{"name":"SPIE Medical Imaging","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2217164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an extension of the classic Conjugate Gradient Algorithm. Motivated by the Analyzer-Based Imaging inverse problem, the novel method maximizes the Poisson regularized log-likelihood with a non-linear transformation of parameter faster than other solutions. The new approach takes advantage of the special properties of the Poisson log-likelihood to conjugate each ascend direction with respect all the previous directions taken by the algorithm. Our solution is compared with the general solution for non-quadratic unconstrained problems: the Polak- Ribiere formula. Both methods are applied to the ABI reconstruction problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分析仪成像重建的快速共轭梯度算法扩展
本文提出了经典共轭梯度算法的推广。该方法以基于分析仪的成像反问题为动力,通过参数的非线性变换实现泊松正则化对数似然的最大化,比其他方法更快。该方法利用泊松对数似然的特殊性质,将每个上升方向与之前算法所取的所有方向进行共轭。我们的解与非二次型无约束问题的一般解Polak- Ribiere公式进行了比较。这两种方法都应用于ABI重构问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing and enhancing a deep learning framework using patients age and gender for chest x-ray image retrieval EXPLORER: Changing the molecular imaging paradigm with total-body PET/CT (Conference Presentation) The evolution of medical imaging from qualitative to quantitative: opportunities, challenges, and approaches (Conference Presentation) New platform for evaluating ultrasound-guided interventional technologies Speed of sound estimation with active PZT element for thermal monitoring during ablation therapy: feasibility study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1