Stiffness modeling across transition temperatures in virtual environments by B-spline interpolation

C. Mitsantisuk, K. Ohishi, S. Urushihara, S. Katsura
{"title":"Stiffness modeling across transition temperatures in virtual environments by B-spline interpolation","authors":"C. Mitsantisuk, K. Ohishi, S. Urushihara, S. Katsura","doi":"10.1109/AMC.2010.5464108","DOIUrl":null,"url":null,"abstract":"The development of haptic technology has been a significant trend worldwide. To simulate the virtual environments, several researchers have estimated the parameters of environment in order to interact with human operators. However, the material properties of real environments are greatly influenced by temperature. In this paper, the haptic databased is designed and all of the properties of B-spline curves can be adopted to construct the virtual environments. The order of the curve for the B-spline blending function is set as the natural cubic B-spline. Thus, it is possible to generate a good realization of interaction force and simulate a soft and hard virtual environment according to the material properties. From the experimental results, the proposed mathematical model can be changed the material properties under various condition of temperature.","PeriodicalId":406900,"journal":{"name":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2010.5464108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The development of haptic technology has been a significant trend worldwide. To simulate the virtual environments, several researchers have estimated the parameters of environment in order to interact with human operators. However, the material properties of real environments are greatly influenced by temperature. In this paper, the haptic databased is designed and all of the properties of B-spline curves can be adopted to construct the virtual environments. The order of the curve for the B-spline blending function is set as the natural cubic B-spline. Thus, it is possible to generate a good realization of interaction force and simulate a soft and hard virtual environment according to the material properties. From the experimental results, the proposed mathematical model can be changed the material properties under various condition of temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于b样条插值的虚拟环境跨过渡温度刚度建模
触觉技术的发展已成为世界范围内的一个重要趋势。为了模拟虚拟环境,一些研究人员估计了环境参数,以便与人类操作员进行交互。然而,实际环境中的材料性能受温度的影响很大。本文设计了触觉数据库,利用b样条曲线的所有特性来构建虚拟环境。b样条混合函数的曲线阶设置为自然三次b样条。从而可以生成良好的相互作用力实现,并根据材料特性模拟软硬虚拟环境。实验结果表明,所建立的数学模型可以在不同温度条件下改变材料的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental closed-form solution to globally consistent 2D range scan mapping with two-step pose estimation A proposal of feature extraction for impression analysis Advanced contouring error compensation in high performance motion control systems Smooth touch and force control to unknown environment without force sensor for industrial robot A simplified structure for robustness enhancement of time-delay systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1