Adaptive robust speech processing based on acoustic noise estimation and classification

F. Beritelli, S. Casale, S. Serrano
{"title":"Adaptive robust speech processing based on acoustic noise estimation and classification","authors":"F. Beritelli, S. Casale, S. Serrano","doi":"10.1109/ISSPIT.2005.1577196","DOIUrl":null,"url":null,"abstract":"The paper presents an adaptive system for speech signal processing in the presence of loud background noise. The validity of the approach is confirmed by implementing a classification system for voiced and unvoiced (V/UV) speech frames. Genetic algorithms were used to select the parameters that offer the best V/UV classification in the presence of 4 different types of background noise and with 5 different SNRs. 20 neural network-based classification systems were then implemented, chosen dynamically frame by frame according to the output of a background noise recognition system and an SNR estimation system. The system was implemented and the tests performed using the TIMIT speech corpus and its phonetic classification. The results were compared with a non-adaptive classification system and the 3 V/UV detectors adopted by three important: LPClO, ITU-T G. 723.1 and ETSI AMR. In all cases the adaptive V/UV classifier clearly outperformed the others, confirming the validity of the adaptive approach","PeriodicalId":421826,"journal":{"name":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2005.1577196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper presents an adaptive system for speech signal processing in the presence of loud background noise. The validity of the approach is confirmed by implementing a classification system for voiced and unvoiced (V/UV) speech frames. Genetic algorithms were used to select the parameters that offer the best V/UV classification in the presence of 4 different types of background noise and with 5 different SNRs. 20 neural network-based classification systems were then implemented, chosen dynamically frame by frame according to the output of a background noise recognition system and an SNR estimation system. The system was implemented and the tests performed using the TIMIT speech corpus and its phonetic classification. The results were compared with a non-adaptive classification system and the 3 V/UV detectors adopted by three important: LPClO, ITU-T G. 723.1 and ETSI AMR. In all cases the adaptive V/UV classifier clearly outperformed the others, confirming the validity of the adaptive approach
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于噪声估计和分类的自适应鲁棒语音处理
提出了一种适用于大背景噪声环境下语音信号处理的自适应系统。通过实现浊音和浊音(V/UV)语音帧的分类系统,验证了该方法的有效性。在4种不同类型的背景噪声和5种不同信噪比的情况下,使用遗传算法选择提供最佳V/UV分类的参数。然后实现了20个基于神经网络的分类系统,根据背景噪声识别系统和信噪比估计系统的输出逐帧动态选择。利用TIMIT语音语料库及其语音分类对系统进行了实现和测试。结果与非自适应分类系统和三种重要的3 V/UV检测器LPClO、ITU-T G. 723.1和ETSI AMR进行了比较。在所有情况下,自适应V/UV分类器明显优于其他分类器,证实了自适应方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A butterfly structure for rate k/n convolutional codes Mode decision optimization issues in H.264 video coding Implementation procedure of wireless signal map matching for location-based services Speech synthesis from surface electromyogram signal A text summarizer based on meta-search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1