Constrained Kaczmarz's cyclic projections for unmixing hyperspectral data

P. Honeine, H. Lantéri, C. Richard
{"title":"Constrained Kaczmarz's cyclic projections for unmixing hyperspectral data","authors":"P. Honeine, H. Lantéri, C. Richard","doi":"10.5281/ZENODO.43534","DOIUrl":null,"url":null,"abstract":"The estimation of fractional abundances under physical constraints is a fundamental problem in hyperspectral data processing. In this paper, we propose to adapt Kaczmarz's cyclic projections to solve this problem. The main contribution of this work is two-fold: On the one hand, we show that the non-negativity and the sum-to-one constraints can be easily imposed in Kaczmarz's cyclic projections, and on the second hand, we illustrate that these constraints are advantageous in the convergence behavior of the algorithm. To this end, we derive theoretical results on the convergence performance, both in the noiseless case and in the case of noisy data. Experimental results show the relevance of the proposed method.","PeriodicalId":400766,"journal":{"name":"21st European Signal Processing Conference (EUSIPCO 2013)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st European Signal Processing Conference (EUSIPCO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The estimation of fractional abundances under physical constraints is a fundamental problem in hyperspectral data processing. In this paper, we propose to adapt Kaczmarz's cyclic projections to solve this problem. The main contribution of this work is two-fold: On the one hand, we show that the non-negativity and the sum-to-one constraints can be easily imposed in Kaczmarz's cyclic projections, and on the second hand, we illustrate that these constraints are advantageous in the convergence behavior of the algorithm. To this end, we derive theoretical results on the convergence performance, both in the noiseless case and in the case of noisy data. Experimental results show the relevance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解调高光谱数据的约束Kaczmarz循环投影
物理约束下的分数丰度估计是高光谱数据处理中的一个基本问题。在本文中,我们提出采用卡兹马尔兹循环投影来解决这个问题。这项工作的主要贡献有两个方面:一方面,我们证明了在Kaczmarz的循环投影中可以很容易地施加非负性和和一约束,另一方面,我们说明了这些约束对算法的收敛行为是有利的。为此,我们推导了在无噪声情况下和有噪声数据情况下收敛性能的理论结果。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iterative algorithms for unbiased FIR state estimation in discrete time Detection of clipping in coded speech signals Primary emitter localization using smartly initialized Metropolis-Hastings algorithm Online multi-speaker tracking using multiple microphone arrays informed by auditory scene analysis Fast diffraction-pattern matching for object detection and recognition in digital holograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1