{"title":"Multi-fingered robotic hand based on hybrid mechanism of tendon-driven and jamming transition","authors":"Kaori Mizushima, Takumi Oku, Yosuke Suzuki, Tokuo Tsuji, Tetsuyou Watanabe","doi":"10.1109/ROBOSOFT.2018.8404948","DOIUrl":null,"url":null,"abstract":"This study presents a novel four-fingered robotic hand to attain a soft contact and high stability under disturbances while holding an object. Each finger is constructed using a tendon-driven skeleton, granular materials corresponding to finger pulp, and a deformable rubber skin. This structure provides soft contact with an object, as well as high adaptation to its shape. Even if the object is deformable and fragile, a grasping posture can be formed without deforming the object. If the air around the granular materials in the rubber skin and jamming transition is vacuumed, the grasping posture can be fixed and the object can be grasped firmly and stably. A high grasping stability under disturbances can be attained. Additionally, the fingertips can work as a small jamming gripper to grasp an object smaller than a fingertip. An experimental investigation indicated that the proposed structure provides a high grasping force with a jamming transition with high adaptability to the object's shape.","PeriodicalId":306255,"journal":{"name":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOSOFT.2018.8404948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
This study presents a novel four-fingered robotic hand to attain a soft contact and high stability under disturbances while holding an object. Each finger is constructed using a tendon-driven skeleton, granular materials corresponding to finger pulp, and a deformable rubber skin. This structure provides soft contact with an object, as well as high adaptation to its shape. Even if the object is deformable and fragile, a grasping posture can be formed without deforming the object. If the air around the granular materials in the rubber skin and jamming transition is vacuumed, the grasping posture can be fixed and the object can be grasped firmly and stably. A high grasping stability under disturbances can be attained. Additionally, the fingertips can work as a small jamming gripper to grasp an object smaller than a fingertip. An experimental investigation indicated that the proposed structure provides a high grasping force with a jamming transition with high adaptability to the object's shape.