{"title":"Aspect Based Emotion Detection and Topic Modeling on Social Media Reviews","authors":"Ganesh N. Jorvekar, Mohit Gangwar","doi":"10.3233/apc210242","DOIUrl":null,"url":null,"abstract":"In recent years, the number of user comments and text materials has increased dramatically. Analysis of the emotions has drawn interest from researchers. Earlier research in the field of artificial-intelligence concentrate on identification of emotion and exploring the explanation the emotions can’t recognized or misrecognized. The association between the emotions leads to the understanding of emotion loss. In this Work we are trying to fill the gap between emotional recognition and emotional co-relation mining through social media reviews of natural language text. The association between emotions, represented as the emotional uncertainty and evolution, is mainly triggered by cognitive bias in the human emotion. Numerous types of features and Recurrent neural-network (RNN) as deep learning model provided to mine the emotion co-relation from emotion detection using text. The rule on conflict of emotions is derived on a symmetric basis. TF-IDF, NLP Features and Co-relation features has used for feature extraction as well as section and Recurrent Neural Network (RNN) and Hybrid deep learning algorithm for classification has used to demonstrates the entire research experiments. Finally evaluate the system performance with various existing system and show the effectiveness of proposed system.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the number of user comments and text materials has increased dramatically. Analysis of the emotions has drawn interest from researchers. Earlier research in the field of artificial-intelligence concentrate on identification of emotion and exploring the explanation the emotions can’t recognized or misrecognized. The association between the emotions leads to the understanding of emotion loss. In this Work we are trying to fill the gap between emotional recognition and emotional co-relation mining through social media reviews of natural language text. The association between emotions, represented as the emotional uncertainty and evolution, is mainly triggered by cognitive bias in the human emotion. Numerous types of features and Recurrent neural-network (RNN) as deep learning model provided to mine the emotion co-relation from emotion detection using text. The rule on conflict of emotions is derived on a symmetric basis. TF-IDF, NLP Features and Co-relation features has used for feature extraction as well as section and Recurrent Neural Network (RNN) and Hybrid deep learning algorithm for classification has used to demonstrates the entire research experiments. Finally evaluate the system performance with various existing system and show the effectiveness of proposed system.