How Document Sampling and Vocabulary Pruning Affect the Results of Topic Models

D. Maier, A. Niekler, Gregor Wiedemann, Daniela Stoltenberg
{"title":"How Document Sampling and Vocabulary Pruning Affect the Results of Topic Models","authors":"D. Maier, A. Niekler, Gregor Wiedemann, Daniela Stoltenberg","doi":"10.31219/osf.io/2rh6g","DOIUrl":null,"url":null,"abstract":"\n Topic modeling enables researchers to explore large document corpora. Large corpora, however, can be extremely costly to model in terms of time and computing resources. In order to circumvent this problem, two techniques have been suggested: (1) to model random document samples, and (2) to prune the vocabulary of the corpus. Although frequently applied, there has been no systematic inquiry into how the application of these techniques affects the respective models. Using three empirical corpora with different characteristics (news articles, websites, and Tweets), we systematically investigated how different sample sizes and pruning affect the resulting topic models in comparison to models of the full corpora. Our inquiry provides evidence that both techniques are viable tools that will likely not impair the resulting model. Sample-based topic models closely resemble corpus-based models if the sample size is large enough (> 10,000 documents). Moreover, extensive pruning does not compromise the quality of the resultant topics.","PeriodicalId":275035,"journal":{"name":"Computational Communication Research","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Communication Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/2rh6g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Topic modeling enables researchers to explore large document corpora. Large corpora, however, can be extremely costly to model in terms of time and computing resources. In order to circumvent this problem, two techniques have been suggested: (1) to model random document samples, and (2) to prune the vocabulary of the corpus. Although frequently applied, there has been no systematic inquiry into how the application of these techniques affects the respective models. Using three empirical corpora with different characteristics (news articles, websites, and Tweets), we systematically investigated how different sample sizes and pruning affect the resulting topic models in comparison to models of the full corpora. Our inquiry provides evidence that both techniques are viable tools that will likely not impair the resulting model. Sample-based topic models closely resemble corpus-based models if the sample size is large enough (> 10,000 documents). Moreover, extensive pruning does not compromise the quality of the resultant topics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文档采样和词汇修剪如何影响主题模型的结果
主题建模使研究人员能够探索大型文档语料库。然而,就时间和计算资源而言,大型语料库的建模成本非常高。为了避免这个问题,提出了两种技术:(1)对随机文档样本进行建模,(2)对语料库中的词汇进行修剪。虽然这些技术经常被应用,但没有系统地研究这些技术的应用如何影响各自的模型。使用三个具有不同特征的经验语料库(新闻文章、网站和推文),我们系统地研究了不同样本量和修剪如何影响最终的主题模型,并与完整语料库的模型进行了比较。我们的调查提供了证据,证明这两种技术都是可行的工具,可能不会损害最终的模型。如果样本量足够大(> 10,000个文档),基于样本的主题模型与基于语料库的模型非常相似。此外,广泛的修剪并不会影响生成主题的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using State-of-the-art Emotion Detection Models in a Crisis Communication Context How COVID-19 and the News Shaped Populism in Facebook Comments in Seven European Countries. : A Computational Analysis. Agent-based modeling of diversity, new information and minority groups in opinion formation Going Micro to Go Negative? Algorithmic Recommendations’ Role for the Interrelatedness of Counter-Messages and Polluted Content on YouTube – A Network Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1