Robustness analysis of a MOEA-based elicitation method for outranking model parameters

Edgar Covantes Osuna, E. Fernández, Jorge Navarro
{"title":"Robustness analysis of a MOEA-based elicitation method for outranking model parameters","authors":"Edgar Covantes Osuna, E. Fernández, Jorge Navarro","doi":"10.1109/ICEEE.2013.6676017","DOIUrl":null,"url":null,"abstract":"To set the parameter values for the outranking model is usually a demanding task for the decision-maker (DM) because it is necessary to provide a large number of parameters (thresholds and weights). The use of indirect methods (preference-disaggregation analysis (PDA)) to infer the set of parameters from a battery of decision examples allows the DM to avoid the task of specifying these values. In this paper a robustness analysis has been made to a PDA method based on an evolutionary approach. In this case we use THESEUS method as an artificial DM and its assignment rule for evaluating each individual of a multi-objective evolutionary algorithm (MOEA) population. The non-dominated solutions are acceptable parameter settlements.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

To set the parameter values for the outranking model is usually a demanding task for the decision-maker (DM) because it is necessary to provide a large number of parameters (thresholds and weights). The use of indirect methods (preference-disaggregation analysis (PDA)) to infer the set of parameters from a battery of decision examples allows the DM to avoid the task of specifying these values. In this paper a robustness analysis has been made to a PDA method based on an evolutionary approach. In this case we use THESEUS method as an artificial DM and its assignment rule for evaluating each individual of a multi-objective evolutionary algorithm (MOEA) population. The non-dominated solutions are acceptable parameter settlements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于moea的模型参数超排序启发方法的鲁棒性分析
对于决策者(DM)来说,设置超排序模型的参数值通常是一项要求很高的任务,因为它需要提供大量的参数(阈值和权重)。使用间接方法(偏好分解分析(PDA))从一组决策示例中推断出一组参数,允许DM避免指定这些值的任务。本文对基于进化方法的PDA方法进行了鲁棒性分析。在这种情况下,我们使用THESEUS方法作为人工DM及其分配规则来评估多目标进化算法(MOEA)群体中的每个个体。非支配解是可接受的参数沉降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronization of complex networks of fractional order nonlinear systems Approximate jitter probability in the breakpoints of genome copy number variations Optical and structural characterization of antimony doped zinc oxide single crystal Modeling of a greenhouse using Particle Swarm Optimization Influence of recombination on the energy and heat balance equations for a bipolar semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1