機械学習・深層学習・計量経済学に関する先行研究の整理 (Previous Studies on Machine Learning, Deep Learning, and Econometrics)

T. Ishii
{"title":"機械学習・深層学習・計量経済学に関する先行研究の整理 (Previous Studies on Machine Learning, Deep Learning, and Econometrics)","authors":"T. Ishii","doi":"10.2139/ssrn.3530417","DOIUrl":null,"url":null,"abstract":"<b>Japanese Abstract:</b> 本研究は、機械学習・深層学習・強化学習の分野と計量経済学の分野の近接性を探す点に特徴をもつ。計量経済学において時系列分析やパネル分析を学んでいれば、機械学習は分析手法とともに計量経済学の考え方に多くの共通点をもつことから今後は関係性をより体系的に考察することが重要となると考える。また計量経済学も因果推論の分野では機械学習が活用されており、その関係性を説明する。さらに機械学習と計量経済学の近年の研究の進展を概観するため、画像認識や音声認識における機械学習のビジネスへの応用やCATEやLASSO、 政策配分問題としてのELMや疫学における因果推論としてCMA(因果媒介分析)・Causal Forest・SDD・構造推定などを幅広く扱う。<br><br><b>English Abstract:</b> This research is characterized in that it seeks closeness between the fields of machine learning, deep learning and reinforcement learning and the field of econometrics. If you are studying time series analysis or panel analysis in econometrics, machine learning has much in common with econometrics as well as analytical methods, so it is important to consider relationships more systematically in the future. I think it will be. In econometrics, machine learning is used in the field of causal inference, and the relationship is explained. In order to give an overview of recent advances in research on machine learning and econometrics, we have applied machine learning to business in image recognition and speech recognition, CATE and LASSO, ELM as a policy distribution problem, and CMA (causal inference in epidemiology). Mediation analysis), Causal Forest, SDD, structure estimation, etc.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3530417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Japanese Abstract: 本研究は、機械学習・深層学習・強化学習の分野と計量経済学の分野の近接性を探す点に特徴をもつ。計量経済学において時系列分析やパネル分析を学んでいれば、機械学習は分析手法とともに計量経済学の考え方に多くの共通点をもつことから今後は関係性をより体系的に考察することが重要となると考える。また計量経済学も因果推論の分野では機械学習が活用されており、その関係性を説明する。さらに機械学習と計量経済学の近年の研究の進展を概観するため、画像認識や音声認識における機械学習のビジネスへの応用やCATEやLASSO、 政策配分問題としてのELMや疫学における因果推論としてCMA(因果媒介分析)・Causal Forest・SDD・構造推定などを幅広く扱う。

English Abstract: This research is characterized in that it seeks closeness between the fields of machine learning, deep learning and reinforcement learning and the field of econometrics. If you are studying time series analysis or panel analysis in econometrics, machine learning has much in common with econometrics as well as analytical methods, so it is important to consider relationships more systematically in the future. I think it will be. In econometrics, machine learning is used in the field of causal inference, and the relationship is explained. In order to give an overview of recent advances in research on machine learning and econometrics, we have applied machine learning to business in image recognition and speech recognition, CATE and LASSO, ELM as a policy distribution problem, and CMA (causal inference in epidemiology). Mediation analysis), Causal Forest, SDD, structure estimation, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习、深度学习、计量经济学相关的先行研究整理(Previous Studies on Machine Learning, Deep Learning, and Econometrics)
Japanese Abstract:本研究的特点是寻找机器学习、深度学习、强化学习领域与计量经济学领域的接近性。在计量经济学中,如果学习了时间序列分析和小组分析的话,机器学习和分析方法在计量经济学的思考方式中有很多共同点,因此今后更系统地考察关系是很重要的。另外,计量经济学在因果推理领域也运用了机器学习来解释两者之间的关系。此外,为了概述机器学习和计量经济学近年来的研究进展,我还介绍了机器学习在图像识别和语音识别方面的商业应用,以及CATE、LASSO、包括作为政策分配问题的ELM,以及作为流行病学因果推理的CMA(因果媒介分析)、Causal Forest、SDD、结构推断等。english abstract:This research is characterized in that it seeks closeness between the fields of机器学习,deep learning and reinforcement learning and the field of econometrics. If you are studying timeseries analysis or panel analysis in econometrics,机器学习has much in common with econometrics as well as analytical methods,so it is important to consider relationships more systematically in the future. I think it will be.In econometrics,机器学习is used In the field of causal inference,and the relationship is explained. In order to give an overview of recent advances In research on机器学习与经济学we have applied machine learning to business in image recognition and speech recognitionCATE and LASSO, ELM as a policy distribution problem,and CMA (causal inference in epidemiology). Mediation analysis), causal Forest, SDD,结构结构,etc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Edgeworth Cycles Forecasting High-Dimensional Covariance Matrices of Asset Returns with Hybrid GARCH-LSTMs Improve the Prediction of Wind Speed using Hyperbolic Tangent Function with Artificial Neural Network Using Deep Q-Networks to Train an Agent to Navigate the Unity ML-Agents Banana Environment What Can Analysts Learn from Artificial Intelligence about Fundamental Analysis?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1