An Efficient Tag Recommendation Method using Topic Modeling Approaches

Beomseok Hong, Yanggon Kim, Sang Ho Lee
{"title":"An Efficient Tag Recommendation Method using Topic Modeling Approaches","authors":"Beomseok Hong, Yanggon Kim, Sang Ho Lee","doi":"10.1145/3129676.3129709","DOIUrl":null,"url":null,"abstract":"Software information sites such as Stack Overflow, Super User, and Ask Ubuntu allow users to post software-related questions, answer the questions asked by other users, and add tags to their questions. Tagging is a popular system across web communities because allowing users to classify their contents is less costly than employing an expert to categorize them. However, tagging systems suffer from the problem of the tag explosion and the tag synonym. To solve these problems, we propose a tag recommendation method using topic modeling approaches. Topic models have advantages of dimensionality reduction and document similarity. We also emphasize highest topics in calculating document similarity to retrieve more relevant documents. Our tag recommendation method considers the document similarity and the historical tag occurrence to calculate tag scores. Experiment results show that emphasizing highest topic distributions increases overall performance of tag recommendation.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129676.3129709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Software information sites such as Stack Overflow, Super User, and Ask Ubuntu allow users to post software-related questions, answer the questions asked by other users, and add tags to their questions. Tagging is a popular system across web communities because allowing users to classify their contents is less costly than employing an expert to categorize them. However, tagging systems suffer from the problem of the tag explosion and the tag synonym. To solve these problems, we propose a tag recommendation method using topic modeling approaches. Topic models have advantages of dimensionality reduction and document similarity. We also emphasize highest topics in calculating document similarity to retrieve more relevant documents. Our tag recommendation method considers the document similarity and the historical tag occurrence to calculate tag scores. Experiment results show that emphasizing highest topic distributions increases overall performance of tag recommendation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主题建模方法的高效标签推荐方法
软件信息网站,如Stack Overflow、Super User和Ask Ubuntu,允许用户发布与软件相关的问题,回答其他用户提出的问题,并为他们的问题添加标签。标签在网络社区中是一种流行的系统,因为允许用户对他们的内容进行分类比聘请专家进行分类要便宜。然而,标签系统存在标签爆炸和标签同义词的问题。为了解决这些问题,我们提出了一种使用主题建模方法的标签推荐方法。主题模型具有降维和文档相似的优点。我们还在计算文档相似度时强调最高主题,以检索更多相关文档。我们的标签推荐方法考虑文档相似度和历史标签出现率来计算标签分数。实验结果表明,强调最高主题分布可以提高标签推荐的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Extrinsic Depth Camera Calibration Method for Narrow Field of View Color Camera Motion Mode Recognition for Traffic Safety in Campus Guiding Application Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study PerfNet Road Surface Profiling based on Artificial-Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1