A local shape descriptor for mobile linedrawing retrieval

Y. Xuan, Ling-yu Duan, Tiejun Huang
{"title":"A local shape descriptor for mobile linedrawing retrieval","authors":"Y. Xuan, Ling-yu Duan, Tiejun Huang","doi":"10.1109/VCIP.2013.6706378","DOIUrl":null,"url":null,"abstract":"Coming with the rapid spread of Intelligent terminals with camera, mobile visual search techniques have undergone a revolution, where visual information can be easily browsed and retrieved upon simply capturing a query photo. However, most existing work targets at compact description of natural scene image statistics, while dealing with line drawing images retains an open problem. This paper presents a unified framework of line drawing problems in mobile visual search. We propose a compact description of line drawing image named Local Inner-Distance Shape Context (LISC) which is robust to the distortion and occlusion and enjoys scale and rotation invariance. Together with an innovative compression scheme using JBIG2 to reduce query delivery latency, our framework works well on both a self-built dataset and MPEG- 7 CE Shape-1 dataset. Promising results on both datasets show significant improvement over state-of-the-art algorithms.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"1630 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coming with the rapid spread of Intelligent terminals with camera, mobile visual search techniques have undergone a revolution, where visual information can be easily browsed and retrieved upon simply capturing a query photo. However, most existing work targets at compact description of natural scene image statistics, while dealing with line drawing images retains an open problem. This paper presents a unified framework of line drawing problems in mobile visual search. We propose a compact description of line drawing image named Local Inner-Distance Shape Context (LISC) which is robust to the distortion and occlusion and enjoys scale and rotation invariance. Together with an innovative compression scheme using JBIG2 to reduce query delivery latency, our framework works well on both a self-built dataset and MPEG- 7 CE Shape-1 dataset. Promising results on both datasets show significant improvement over state-of-the-art algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于移动线条检索的局部形状描述符
随着带摄像头的智能终端的迅速普及,移动视觉搜索技术发生了一场革命,只需拍摄一张查询照片就可以轻松浏览和检索视觉信息。然而,大多数现有的工作都是针对自然场景图像统计的紧凑描述,而处理线条绘制图像仍然是一个开放的问题。本文提出了移动视觉搜索中线条绘制问题的统一框架。我们提出了一种紧凑的线条图像描述方法,称为局部内距离形状上下文(LISC),该方法对扭曲和遮挡具有鲁棒性,并且具有尺度和旋转不变性。结合使用JBIG2的创新压缩方案来减少查询交付延迟,我们的框架在自建数据集和MPEG- 7 CE Shape-1数据集上都能很好地工作。在这两个数据集上的令人鼓舞的结果表明,与最先进的算法相比,有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New motherwavelet for pattern detection in IR image Improved disparity vector derivation in 3D-HEVC Learning non-negative locality-constrained Linear Coding for human action recognition Wavelet based smoke detection method with RGB Contrast-image and shape constrain Joint image denoising using self-similarity based low-rank approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1