Calculated attenuation correction for awake small animal brain PET studies

G. Angelis, M. Bickell, A. Kyme, W. Ryder, Lin Zhou, J. Nuyts, S. Meikle, R. Fulton
{"title":"Calculated attenuation correction for awake small animal brain PET studies","authors":"G. Angelis, M. Bickell, A. Kyme, W. Ryder, Lin Zhou, J. Nuyts, S. Meikle, R. Fulton","doi":"10.1109/NSSMIC.2013.6829263","DOIUrl":null,"url":null,"abstract":"Attenuation correction of small animal PET data is very important when quantitative images are of interest. Attenuation correction coefficients are conventionally obtained via a transmission or a computed tomography scan, which require anaesthetisation of the animal. However, in the context of awake and/or freely moving animals, where animal motion is compensated via appropriate motion tracking and correction techniques, anaesthetisation is no longer required. In this work we investigate the accuracy of a transmission-less attenuation correction approach based on the segmentation of the motion corrected emission image. Results on both phantom and real rat data acquired on the microPET Focus220 scanner, indicate good agreement between the segmentation based and conventional transmission based approach (~ 2% difference). In addition, the segmentation based approach has the potential to eliminate noise propagation from the measured transmission data to the reconstructed attenuation corrected emission images.","PeriodicalId":246351,"journal":{"name":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2013.6829263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Attenuation correction of small animal PET data is very important when quantitative images are of interest. Attenuation correction coefficients are conventionally obtained via a transmission or a computed tomography scan, which require anaesthetisation of the animal. However, in the context of awake and/or freely moving animals, where animal motion is compensated via appropriate motion tracking and correction techniques, anaesthetisation is no longer required. In this work we investigate the accuracy of a transmission-less attenuation correction approach based on the segmentation of the motion corrected emission image. Results on both phantom and real rat data acquired on the microPET Focus220 scanner, indicate good agreement between the segmentation based and conventional transmission based approach (~ 2% difference). In addition, the segmentation based approach has the potential to eliminate noise propagation from the measured transmission data to the reconstructed attenuation corrected emission images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
清醒小动物脑PET研究计算衰减校正
当需要定量图像时,小动物PET数据的衰减校正是非常重要的。衰减校正系数通常通过传输或计算机断层扫描获得,这需要对动物进行麻醉。然而,在清醒和/或自由运动的动物的情况下,动物的运动通过适当的运动跟踪和纠正技术得到补偿,不再需要麻醉。在这项工作中,我们研究了一种基于运动校正发射图像分割的无透射衰减校正方法的精度。结果表明,基于分割的方法与传统的基于传输的方法具有良好的一致性(相差约2%)。此外,基于分割的方法有可能消除从测量传输数据到重建衰减校正发射图像的噪声传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Scientific Trigger Unit for space-based real-time gamma ray burst detection I - Scientific software model and simulations Study on two-cell rf-deflector cavity for ultra-short electron bunch measurement Applications of many-core technologies to on-line event reconstruction in High Energy Physics experiments Optimization of the gas system in the CMS RPC detector at the LHC Performance of the ATLAS calorimeter trigger in the LHC Run 1 data taking period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1