Passivity Analysis of Quadrotor Aircraft for Physical Interactions

Jonathon E. Slightam, Daniel R. McArthur, S. Spencer, S. Buerger
{"title":"Passivity Analysis of Quadrotor Aircraft for Physical Interactions","authors":"Jonathon E. Slightam, Daniel R. McArthur, S. Spencer, S. Buerger","doi":"10.1109/AIRPHARO52252.2021.9571055","DOIUrl":null,"url":null,"abstract":"The broad dissemination of unmanned aerial vehicles (UAV s), specifically quadrotor aircraft, has accelerated their successful use in a wide range of industrial, military, and agricultural applications. Research in the growing field of aerial manipulation (AM) faces many challenges but may enable the next generation of UAV applications. The physical contact required to perform AM tasks results in dynamic coupling with the environment, which may lead to instability with devastating consequences for a UAV in flight. Considering these concerns, this work seeks to determine whether off-the-shelf flight controllers for quadrotor UAV s are suitable for AM applications by investigating the passivity and coupled-stability of quad rotors using generic cascaded position-attitude (CPA) and PX4 flight controllers. Using a planar 3-degree of freedom (DOF) linearized state-space model and two high fidelity 6-DOF models with the CPA and PX4 closed-loop flight controllers, passivity is analyzed during free flight, and stability is analyzed when the UAV is coupled to environments with varying degrees of stiffness. This analysis indicates that quadrotors using the CPA and PX4 flight controllers are non-passive (except for the PX4 controller in the vertical direction with certain vehicle parameters) and may become unstable when the UAV is coupled with environments of certain stiffnesses. Similarities between the results from the linearized 3-DOF model and nonlinear 6-DOF models in the passivity analysis suggest that using an analytical, linear approach is sufficient and potentially useful for vehicle geometry and controller design to improve stability for AM applications.","PeriodicalId":415722,"journal":{"name":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIRPHARO52252.2021.9571055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The broad dissemination of unmanned aerial vehicles (UAV s), specifically quadrotor aircraft, has accelerated their successful use in a wide range of industrial, military, and agricultural applications. Research in the growing field of aerial manipulation (AM) faces many challenges but may enable the next generation of UAV applications. The physical contact required to perform AM tasks results in dynamic coupling with the environment, which may lead to instability with devastating consequences for a UAV in flight. Considering these concerns, this work seeks to determine whether off-the-shelf flight controllers for quadrotor UAV s are suitable for AM applications by investigating the passivity and coupled-stability of quad rotors using generic cascaded position-attitude (CPA) and PX4 flight controllers. Using a planar 3-degree of freedom (DOF) linearized state-space model and two high fidelity 6-DOF models with the CPA and PX4 closed-loop flight controllers, passivity is analyzed during free flight, and stability is analyzed when the UAV is coupled to environments with varying degrees of stiffness. This analysis indicates that quadrotors using the CPA and PX4 flight controllers are non-passive (except for the PX4 controller in the vertical direction with certain vehicle parameters) and may become unstable when the UAV is coupled with environments of certain stiffnesses. Similarities between the results from the linearized 3-DOF model and nonlinear 6-DOF models in the passivity analysis suggest that using an analytical, linear approach is sufficient and potentially useful for vehicle geometry and controller design to improve stability for AM applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四旋翼飞行器物理相互作用的被动分析
无人驾驶飞行器(UAV)的广泛传播,特别是四旋翼飞机,加速了它们在工业、军事和农业应用领域的广泛成功应用。空中操纵(AM)领域的研究面临着许多挑战,但可能使下一代无人机应用成为可能。执行AM任务所需的物理接触会导致与环境的动态耦合,这可能导致无人机飞行中的不稳定性和破坏性后果。考虑到这些问题,本工作旨在通过使用通用级联位置-姿态(CPA)和PX4飞行控制器研究四旋翼的无源性和耦合稳定性,确定四旋翼无人机的现成飞行控制器是否适合AM应用。利用平面3自由度线性化状态空间模型和两个高保真度6自由度模型,结合CPA和PX4闭环飞行控制器,分析了无人机自由飞行时的无源性和不同刚度环境耦合下的稳定性。这一分析表明,使用CPA和PX4飞行控制器的四旋翼是非被动的(除了PX4控制器在垂直方向上具有一定的飞行器参数),当无人机与一定刚度的环境耦合时,可能会变得不稳定。线性化3-DOF模型和非线性6-DOF模型在无源分析中的相似之处表明,使用解析的线性方法是足够的,并且可能对车辆几何和控制器设计有用,以提高增材制造应用的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Program Adaptive Control for Cooperative Aerial Transportation Using Catenary Robots Forest Drones for Environmental Sensing and Nature Conservation A General Control Architecture for Visual Servoing and Physical Interaction Tasks for Fully-actuated Aerial Vehicles Experimental Investigation of Soft-Landing of Quadrotors via Induced Wind Modeling Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1