Load-Balanced Sparse MTTKRP on GPUs

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, R. Vuduc, P. Sadayappan
{"title":"Load-Balanced Sparse MTTKRP on GPUs","authors":"Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, R. Vuduc, P. Sadayappan","doi":"10.1109/IPDPS.2019.00023","DOIUrl":null,"url":null,"abstract":"Sparse matricized tensor times Khatri-Rao product (MTTKRP) is one of the most computationally expensive kernels in sparse tensor computations. This work focuses on optimizing the MTTKRP operation on GPUs, addressing both performance and storage requirements. We begin by identifying the performance bottlenecks in directly extending the state-of-the-art CSF (compressed sparse fiber) format from CPUs to GPUs. A significant challenge with GPUs compared to multicore CPUs is that of utilizing the much greater degree of parallelism in a load-balanced fashion for irregular computations like sparse MTTKRP. To address this issue, we develop a new storage-efficient representation for tensors that enables high-performance, load-balanced execution of MTTKRP on GPUs. A GPU implementation of sparse MTTKRP using the new sparse tensor representation is shown to outperform all currently known parallel sparse CPU and GPU MTTKRP implementations.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Sparse matricized tensor times Khatri-Rao product (MTTKRP) is one of the most computationally expensive kernels in sparse tensor computations. This work focuses on optimizing the MTTKRP operation on GPUs, addressing both performance and storage requirements. We begin by identifying the performance bottlenecks in directly extending the state-of-the-art CSF (compressed sparse fiber) format from CPUs to GPUs. A significant challenge with GPUs compared to multicore CPUs is that of utilizing the much greater degree of parallelism in a load-balanced fashion for irregular computations like sparse MTTKRP. To address this issue, we develop a new storage-efficient representation for tensors that enables high-performance, load-balanced execution of MTTKRP on GPUs. A GPU implementation of sparse MTTKRP using the new sparse tensor representation is shown to outperform all currently known parallel sparse CPU and GPU MTTKRP implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gpu上的负载均衡稀疏MTTKRP
稀疏矩阵张量乘Khatri-Rao积(MTTKRP)是稀疏张量计算中计算量最大的核之一。这项工作的重点是优化gpu上的MTTKRP操作,解决性能和存储需求。我们首先确定直接将最先进的CSF(压缩稀疏光纤)格式从cpu扩展到gpu的性能瓶颈。与多核cpu相比,gpu面临的一个重大挑战是以负载平衡的方式利用更高程度的并行性来进行稀疏MTTKRP等不规则计算。为了解决这个问题,我们为张量开发了一种新的存储效率表示,可以在gpu上实现高性能,负载均衡的MTTKRP执行。使用新的稀疏张量表示的稀疏MTTKRP的GPU实现被证明优于所有目前已知的并行稀疏CPU和GPU MTTKRP实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Weighted All Pairs Shortest Paths Through Pipelining SAFIRE: Scalable and Accurate Fault Injection for Parallel Multithreaded Applications Architecting Racetrack Memory Preshift through Pattern-Based Prediction Mechanisms Z-Dedup:A Case for Deduplicating Compressed Contents in Cloud Dual Pattern Compression Using Data-Preprocessing for Large-Scale GPU Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1