Osteo-Doc: KL-Grading of Osteoarthritis Using Deep-Learning

Haider Masood, Eisha Hassan, A. A. Salam, Muwahida Liaquat
{"title":"Osteo-Doc: KL-Grading of Osteoarthritis Using Deep-Learning","authors":"Haider Masood, Eisha Hassan, A. A. Salam, Muwahida Liaquat","doi":"10.1109/ICoDT255437.2022.9787470","DOIUrl":null,"url":null,"abstract":"Various deep learning frameworks are being proposed for autonomous detection of diseases to contribute towards telemedicine. Moreover, in spite of low doctor to patient ratio, such algorithms aid physicians in tracking the disease with more accuracy. According to WHO, Osteoarthritis has been declared as the most common form of arthritis. Additionally, it is one of the major reasons of physical disability among older age. Different deep learning framework-based approaches exist for evaluation of Knee osteoarthritis but none of them incorporate the feedback or symptoms of the patients. We have proposed a tri-weightage classification model i.e. a hybrid approach for grading osteoarthritis using structural features from X-Ray images, KOOS questionnaire and flexion angle. Moreover, we conducted a comparison of various deep learning model on our dataset and achieved the highest accuracy of 89.29% for RESNET152V2 and INCEPTIONRESNETV2.","PeriodicalId":291030,"journal":{"name":"2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoDT255437.2022.9787470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various deep learning frameworks are being proposed for autonomous detection of diseases to contribute towards telemedicine. Moreover, in spite of low doctor to patient ratio, such algorithms aid physicians in tracking the disease with more accuracy. According to WHO, Osteoarthritis has been declared as the most common form of arthritis. Additionally, it is one of the major reasons of physical disability among older age. Different deep learning framework-based approaches exist for evaluation of Knee osteoarthritis but none of them incorporate the feedback or symptoms of the patients. We have proposed a tri-weightage classification model i.e. a hybrid approach for grading osteoarthritis using structural features from X-Ray images, KOOS questionnaire and flexion angle. Moreover, we conducted a comparison of various deep learning model on our dataset and achieved the highest accuracy of 89.29% for RESNET152V2 and INCEPTIONRESNETV2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨-医生:骨关节炎的深度学习分级
正在提出各种深度学习框架,用于自主检测疾病,以促进远程医疗。此外,尽管医患比例较低,但这种算法可以帮助医生更准确地跟踪疾病。根据世界卫生组织,骨关节炎已被宣布为最常见的关节炎。此外,它是老年人身体残疾的主要原因之一。不同的基于深度学习框架的方法存在于膝骨关节炎的评估中,但它们都没有纳入患者的反馈或症状。我们提出了一种三权重分类模型,即利用x射线图像、oos问卷和屈曲角度的结构特征对骨关节炎进行分级的混合方法。此外,我们在我们的数据集上对各种深度学习模型进行了比较,RESNET152V2和INCEPTIONRESNETV2的准确率最高,达到89.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Images Using Deep Learning: A Survey Semantic Keywords Extraction from Paper Abstract in the Domain of Educational Big Data to support Topic Clustering Automatically Categorizing Software Technologies A Theoretical CNN Compression Framework for Resource-Restricted Environments Automatic Detection and classification of Scoliosis from Spine X-rays using Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1