Stanford MLab at SemEval-2023 Task 10: Exploring GloVe- and Transformer-Based Methods for the Explainable Detection of Online Sexism

Hee Jung Choi, Trevor Chow, Aaron Wan, Hong Meng Yam, S. Yogeswaran, Beining Zhou
{"title":"Stanford MLab at SemEval-2023 Task 10: Exploring GloVe- and Transformer-Based Methods for the Explainable Detection of Online Sexism","authors":"Hee Jung Choi, Trevor Chow, Aaron Wan, Hong Meng Yam, S. Yogeswaran, Beining Zhou","doi":"10.48550/arXiv.2305.04356","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the methods we applied at SemEval-2023 Task 10: Towards the Explainable Detection of Online Sexism. Given an input text, we perform three classification tasks to predict whether the text is sexist and classify the sexist text into subcategories in order to provide an additional explanation as to why the text is sexist. We explored many different types of models, including GloVe embeddings as the baseline approach, transformer-based deep learning models like BERT, RoBERTa, and DeBERTa, ensemble models, and model blending. We explored various data cleaning and augmentation methods to improve model performance. Pre-training transformer models yielded significant improvements in performance, and ensembles and blending slightly improved robustness in the F1 score.","PeriodicalId":444285,"journal":{"name":"International Workshop on Semantic Evaluation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.04356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss the methods we applied at SemEval-2023 Task 10: Towards the Explainable Detection of Online Sexism. Given an input text, we perform three classification tasks to predict whether the text is sexist and classify the sexist text into subcategories in order to provide an additional explanation as to why the text is sexist. We explored many different types of models, including GloVe embeddings as the baseline approach, transformer-based deep learning models like BERT, RoBERTa, and DeBERTa, ensemble models, and model blending. We explored various data cleaning and augmentation methods to improve model performance. Pre-training transformer models yielded significant improvements in performance, and ensembles and blending slightly improved robustness in the F1 score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
任务10:探索基于手套和变压器的在线性别歧视可解释检测方法
在本文中,我们讨论了我们在SemEval-2023任务10中应用的方法:迈向可解释的在线性别歧视检测。给定一个输入文本,我们执行三个分类任务来预测文本是否性别歧视,并将性别歧视文本分类为子类别,以便为文本为什么是性别歧视提供额外的解释。我们探索了许多不同类型的模型,包括作为基线方法的GloVe嵌入、基于转换器的深度学习模型(如BERT、RoBERTa和DeBERTa)、集成模型和模型混合。我们探索了各种数据清理和增强方法来提高模型性能。预训练变压器模型在性能上取得了显著的改进,集成和混合在F1分数上略微提高了鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Possibilistic Intuitionistic Fuzzy c-Means Clustering Algorithm for MRI Brain Image Segmentation
IF 1.1 4区 计算机科学International Journal on Artificial Intelligence ToolsPub Date : 2015-10-19 DOI: 10.1142/S0218213015500165
Hanuman Verma, R. Agrawal
MRI Brain Tumor Segmentation with Intuitionist Possibilistic Fuzzy Clustering and Morphological Operations
IF 2.2 4区 计算机科学Computer Systems Science and EngineeringPub Date : 2022-01-01 DOI: 10.32604/csse.2022.022402
J. Anitha, M. Kalaiarasu
Brain Tumor Segmentation on MRI Brain Images with Fuzzy Clustering and GVF Snake Model
IF 0 Int. J. Comput. Commun. ControlPub Date : 2014-09-18 DOI: 10.15837/IJCCC.2012.3.1393
A. Rajendran, D. Raghavan
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SemEval-2022 Task 7: Identifying Plausible Clarifications of Implicit and Underspecified Phrases in Instructional Texts Mao-Zedong at SemEval-2023 Task 4: Label Represention Multi-Head Attention Model with Contrastive Learning-Enhanced Nearest Neighbor Mechanism for Multi-Label Text Classification UAlberta at SemEval-2023 Task 1: Context Augmentation and Translation for Multilingual Visual Word Sense Disambiguation LCT-1 at SemEval-2023 Task 10: Pre-training and Multi-task Learning for Sexism Detection and Classification CL-UZH at SemEval-2023 Task 10: Sexism Detection through Incremental Fine-Tuning and Multi-Task Learning with Label Descriptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1