Convex duality in stochastic programming and mathematical finance

T. Pennanen
{"title":"Convex duality in stochastic programming and mathematical finance","authors":"T. Pennanen","doi":"10.18452/3036","DOIUrl":null,"url":null,"abstract":"This paper proposes a general duality framework for the problem of minimizing a convex integral functional over a space of stochastic processes adapted to a given filtration. The framework unifies many well-known duality frameworks from operations research and mathematical finance. The unification allows the extension of some useful techniques from these two fields to a much wider class of problems. In particular, combining certain finite-dimensional techniques from convex analysis with measure theoretic techniques from mathematical finance, we are able to close the duality gap in some situations where traditional topological arguments fail.","PeriodicalId":197400,"journal":{"name":"arXiv: Computational Finance","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18452/3036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a general duality framework for the problem of minimizing a convex integral functional over a space of stochastic processes adapted to a given filtration. The framework unifies many well-known duality frameworks from operations research and mathematical finance. The unification allows the extension of some useful techniques from these two fields to a much wider class of problems. In particular, combining certain finite-dimensional techniques from convex analysis with measure theoretic techniques from mathematical finance, we are able to close the duality gap in some situations where traditional topological arguments fail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机规划与数理金融中的凸对偶性
本文提出了一个一般的对偶框架,用于求解在随机过程空间上对给定滤波的凸积分泛函的最小化问题。该框架统一了运筹学和数学金融学中许多著名的对偶框架。这种统一允许将这两个领域的一些有用技术扩展到更广泛的问题类别。特别是,将来自凸分析的某些有限维技术与数学金融的度量理论技术相结合,我们能够在传统拓扑论证失败的某些情况下缩小对偶性差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BOUNDS ON MULTI-ASSET DERIVATIVES VIA NEURAL NETWORKS Compact Finite Difference Method for Pricing European and American Options Under Jump-Diffusion Models Numerical analysis on quadratic hedging strategies for normal inverse Gaussian models Part 1: Training Sets & ASG Transforms Feedback effect between Volatility of capital flows and financial stability: evidence from Democratic Republic of Congo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1