Digital Rock Core Images Super Resolution via SRCNN Based on Accelerated Bicubic Interpolation

Yunfeng Bai, V. Berezovsky, V. Popov
{"title":"Digital Rock Core Images Super Resolution via SRCNN Based on Accelerated Bicubic Interpolation","authors":"Yunfeng Bai, V. Berezovsky, V. Popov","doi":"10.1145/3411016.3411162","DOIUrl":null,"url":null,"abstract":"The capability of Super Resolution Convolutional Neural Networks (SRCNN) has been proved to enhance resolution of images. We applied SRCNN to enhance digital rock core images that play an important role in analyzing rock core. In this process, we noticed that the bicubic interpolation algorithm that is the first step of SRCNN might improve the speed by adjusting the calculation strategy. We proposed an SRCNN based on accelerated bicubic interpolation and tested the performance with 2000 digital rock core images. The experiment demonstrated that the accelerated bicubic interpolation algorithm faster than improved region-based bicubic image interpolation algorithm and standard bicubic interpolation algorithm, and demonstrated the feasibility of SRCNN based on our proposed algorithm to produce higher resolution digital rock core images.","PeriodicalId":251897,"journal":{"name":"Proceedings of the 2nd International Conference on Industrial Control Network And System Engineering Research","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Industrial Control Network And System Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411016.3411162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The capability of Super Resolution Convolutional Neural Networks (SRCNN) has been proved to enhance resolution of images. We applied SRCNN to enhance digital rock core images that play an important role in analyzing rock core. In this process, we noticed that the bicubic interpolation algorithm that is the first step of SRCNN might improve the speed by adjusting the calculation strategy. We proposed an SRCNN based on accelerated bicubic interpolation and tested the performance with 2000 digital rock core images. The experiment demonstrated that the accelerated bicubic interpolation algorithm faster than improved region-based bicubic image interpolation algorithm and standard bicubic interpolation algorithm, and demonstrated the feasibility of SRCNN based on our proposed algorithm to produce higher resolution digital rock core images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加速双三次插值的SRCNN数字岩心图像超分辨率
超分辨率卷积神经网络(SRCNN)已被证明具有提高图像分辨率的能力。应用SRCNN对岩心数字图像进行了增强,对岩心分析具有重要意义。在这个过程中,我们注意到作为SRCNN第一步的双三次插值算法可能会通过调整计算策略来提高速度。提出了一种基于加速双三次插值的SRCNN算法,并用2000张数字岩心图像进行了性能测试。实验表明,加速双三次插值算法比改进的基于区域的双三次图像插值算法和标准双三次插值算法更快,并证明了基于本文算法的SRCNN生成更高分辨率数字岩心图像的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relativity-Driven Optimization for Test Schedule of Spaceflight Products at Launch Site Design and Implementation of Grain Traceability Code Coding Scheme A color image edge detection method based on entropy operator A two-dimensional code security authentication method based on digital watermarking A Performance Analysis of Container Cluster Networking Alternatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1