Self managed system of sensor network — an artificial ecological system

R. Luo, W.H. Chang
{"title":"Self managed system of sensor network — an artificial ecological system","authors":"R. Luo, W.H. Chang","doi":"10.1109/ARSO.2007.4531413","DOIUrl":null,"url":null,"abstract":"We have constructed a self-maintain system based on the concept of the artificial ecological system (AES). Under the framework of the AES, we proposed a model of ecological balancing include the sensor nodes dynamics model (SNDM), the sensor nodes ecological model (SNEM) and the population growth limit model (PGLM). The SNDM is used to implement the diffusion, and the SNEM is used to maintain the sensor nodes. The PGLM can control the sensor network density. We discussed the effect of the prey node searching and handling. With these models, we can create an ecological balance environment with automatic recharge, recycle and quantity control. It is desired to keep these sensor nodes reach the blanket coverage and maximize, two species exist and ensure they will not die out. As a result, save tremendous human resource needed and cost on this self-maintain ecological system.","PeriodicalId":344670,"journal":{"name":"2007 IEEE Workshop on Advanced Robotics and Its Social Impacts","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Advanced Robotics and Its Social Impacts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2007.4531413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We have constructed a self-maintain system based on the concept of the artificial ecological system (AES). Under the framework of the AES, we proposed a model of ecological balancing include the sensor nodes dynamics model (SNDM), the sensor nodes ecological model (SNEM) and the population growth limit model (PGLM). The SNDM is used to implement the diffusion, and the SNEM is used to maintain the sensor nodes. The PGLM can control the sensor network density. We discussed the effect of the prey node searching and handling. With these models, we can create an ecological balance environment with automatic recharge, recycle and quantity control. It is desired to keep these sensor nodes reach the blanket coverage and maximize, two species exist and ensure they will not die out. As a result, save tremendous human resource needed and cost on this self-maintain ecological system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器网络自我管理系统——一个人工生态系统
我们基于人工生态系统(AES)的概念构建了一个自我维持的系统。在AES框架下,提出了包括传感器节点动态模型(SNDM)、传感器节点生态模型(SNEM)和种群增长极限模型(PGLM)在内的生态平衡模型。SNDM用于实现扩散,snm用于维护传感器节点。PGLM可以控制传感器网络密度。讨论了猎物节点搜索和处理的效果。通过这些模型,我们可以创造一个自动补给、循环和数量控制的生态平衡环境。希望保持这些传感器节点达到毯子覆盖并最大化,两个物种存在并确保它们不会灭绝。从而节省了大量的人力资源和成本在这个自我维持的生态系统上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile sensor node localization based on sensor fusion using covariance intersection approach Path planning and dynamic simulation of weightlifting robot manipulator Design and application of a new 3-DOF translational parallel manipulator Mobile robot based human detection and tracking using range and intensity data fusion Intelligent battery management system with parallel-connected cell-balance algorithm on the humanoid robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1