Frequency response based damage detection using principal component analysis

J. Tang
{"title":"Frequency response based damage detection using principal component analysis","authors":"J. Tang","doi":"10.1109/ICIA.2005.1635122","DOIUrl":null,"url":null,"abstract":"In this paper we explore structural damage detection using frequency response signals and principal component analysis. While frequency responses are easy to measure especially in online damage detection applications, most of the associated detection methods are deterministic in nature and cannot deal with uncertainties and noise which are inevitable under practical situations. To tackle this issue and to develop a robust damage detection protocol, here we develop a feature extraction/de-noising methodology based on principal component analysis (PCA). The basic idea is to first establish a feature space of the intact structure response by using multiple measurements. Abnormal signature that is different from the baseline signature can then be identified and magnified after signal reconstruction using the intact structure features. Essentially, the directionality between an inspected signal and the baseline signal in the feature space is used as index of damage occurrence. A series of numerical analyses are performed to characterize the detection system sensitivity and robustness.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

In this paper we explore structural damage detection using frequency response signals and principal component analysis. While frequency responses are easy to measure especially in online damage detection applications, most of the associated detection methods are deterministic in nature and cannot deal with uncertainties and noise which are inevitable under practical situations. To tackle this issue and to develop a robust damage detection protocol, here we develop a feature extraction/de-noising methodology based on principal component analysis (PCA). The basic idea is to first establish a feature space of the intact structure response by using multiple measurements. Abnormal signature that is different from the baseline signature can then be identified and magnified after signal reconstruction using the intact structure features. Essentially, the directionality between an inspected signal and the baseline signal in the feature space is used as index of damage occurrence. A series of numerical analyses are performed to characterize the detection system sensitivity and robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频率响应的主成分损伤检测
本文探讨了利用频率响应信号和主成分分析进行结构损伤检测的方法。虽然频率响应很容易测量,特别是在在线损伤检测应用中,但大多数相关的检测方法本质上是确定性的,无法处理在实际情况下不可避免的不确定性和噪声。为了解决这个问题并开发一种鲁棒的损伤检测协议,我们在这里开发了一种基于主成分分析(PCA)的特征提取/去噪方法。其基本思想是首先通过多次测量建立完整结构响应的特征空间。利用完整的结构特征对信号进行重构后,可以识别和放大与基线特征不同的异常特征。本质上,被检测信号与特征空间中基线信号之间的方向性被用作损伤发生的指标。通过一系列的数值分析来表征检测系统的灵敏度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless health monitoring system Haptic telemanipulation of soft environment without direct force feedback Leader-formation navigation with sensor constraints Kinematic model aided inertial motion tracking of human upper limb Study on adaptive Kalman filtering algorithms in human movement tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1