Classification of Compressed Multichannel Images and Its Improvement

G. Proskura, Irina V. Vasilyeva, Fangfang Li, V. Lukin
{"title":"Classification of Compressed Multichannel Images and Its Improvement","authors":"G. Proskura, Irina V. Vasilyeva, Fangfang Li, V. Lukin","doi":"10.1109/RADIOELEKTRONIKA49387.2020.9092371","DOIUrl":null,"url":null,"abstract":"A task of classification of multichannel remote sensing images compressed in a lossy manner is considered. It is recalled that lossy compression usually leads to reduction of classification accuracy both in aggregate and for particular classes. Distortions due to compression are characterized by visual quality metric desired values of which can be provided at compression stage. Dependence of probability of correct classification on image quality and compression ratio is analyzed for several widely used classifiers using a test image composed of three component images of Landsat data in visible range. It is shown that different classifiers are sensitive to distortions introduced by lossy compression in sufficiently different degree. We also propose a way to combine classifiers' outputs to improve classification results.","PeriodicalId":131117,"journal":{"name":"2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A task of classification of multichannel remote sensing images compressed in a lossy manner is considered. It is recalled that lossy compression usually leads to reduction of classification accuracy both in aggregate and for particular classes. Distortions due to compression are characterized by visual quality metric desired values of which can be provided at compression stage. Dependence of probability of correct classification on image quality and compression ratio is analyzed for several widely used classifiers using a test image composed of three component images of Landsat data in visible range. It is shown that different classifiers are sensitive to distortions introduced by lossy compression in sufficiently different degree. We also propose a way to combine classifiers' outputs to improve classification results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压缩多通道图像的分类及其改进
研究了多通道遥感图像的有损压缩分类问题。回顾一下,有损压缩通常会导致总体和特定类别的分类精度降低。由于压缩造成的失真以视觉质量度量为特征,其期望值可以在压缩阶段提供。利用可见光范围内陆地卫星数据三分量图像组成的测试图像,分析了几种常用分类器正确分类概率对图像质量和压缩比的依赖关系。结果表明,不同的分类器对有损压缩引起的失真的敏感程度有很大的不同。我们还提出了一种结合分类器输出来改进分类结果的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Low Pass Filter for M-Sequence UWB Radars Design of a Linear Antenna Array: Variable Number of Dimensions Approach Comparison of Simple Design Methods for Voltage Controllable Resistance Determination of the Atmospheric Turbulence by the Analysis of the Optical Beam Deflection Copyright
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1