A Bayes Classifier Considering Environmental Change for Multivariate Signal Data

Itaru Aso, K. Okuhara
{"title":"A Bayes Classifier Considering Environmental Change for Multivariate Signal Data","authors":"Itaru Aso, K. Okuhara","doi":"10.1109/ICAIIC.2019.8668977","DOIUrl":null,"url":null,"abstract":"In this paper, we suggest learning algorithm of a high precision classifier for multivariate signal. The method deals with environmental influences. In this proposal technique, we define the features of the classification target and the environment as population parameters of probability distribution. We estimate the parameters by using the Bayesian inference. The Bayesian decision rule is used for the selection of similar environment properly in the proposed method. We try to evaluate the influence of the environmental change. In the numerical experiments, we verify that the proposed method has high classification accuracy. As the results, we show that our method can adapt environmental influence.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8668977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we suggest learning algorithm of a high precision classifier for multivariate signal. The method deals with environmental influences. In this proposal technique, we define the features of the classification target and the environment as population parameters of probability distribution. We estimate the parameters by using the Bayesian inference. The Bayesian decision rule is used for the selection of similar environment properly in the proposed method. We try to evaluate the influence of the environmental change. In the numerical experiments, we verify that the proposed method has high classification accuracy. As the results, we show that our method can adapt environmental influence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑环境变化的多变量信号贝叶斯分类器
本文提出了一种高精度多变量信号分类器的学习算法。该方法处理环境影响。在该方法中,我们将分类目标和环境的特征定义为概率分布的总体参数。我们使用贝叶斯推理来估计参数。该方法将贝叶斯决策规则用于相似环境的选择。我们试图评估环境变化的影响。通过数值实验验证了该方法具有较高的分类精度。结果表明,该方法能够适应环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1