Crowd-based urban characterization: extracting crowd behavioral patterns in urban areas from Twitter

Shoko Wakamiya, Ryong Lee, K. Sumiya
{"title":"Crowd-based urban characterization: extracting crowd behavioral patterns in urban areas from Twitter","authors":"Shoko Wakamiya, Ryong Lee, K. Sumiya","doi":"10.1145/2063212.2063225","DOIUrl":null,"url":null,"abstract":"The advent of location-based social networking sites provides an open sharing space of crowd-sourced lifelogs that can be regarded as a novel source to monitor massive crowds' lifestyles in the real world. In this paper, we challenge to analyze urban characteristics in terms of crowd behavior by utilizing the crowd lifelogs in urban area. In order to collect crowd behavioral data, we utilize Twitter where enormous numbers of geo-tagged crowd's micro lifelogs can be easily acquired. We model the crowd behavior on the social network sites as a feature, which will be used to derive crowd-based urban characteristics. Based on this crowd behavior feature, we analyze significant crowd behavioral patterns for extracting urban characteristics. In the experiment, we actually conduct the urban characterization over the crowd behavioral patterns using a large number of geo-tagged tweets found in Japan from Twitter and report a comparison result with map-based observation of cities as an evaluation.","PeriodicalId":107369,"journal":{"name":"Workshop on Location-based Social Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Location-based Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063212.2063225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

The advent of location-based social networking sites provides an open sharing space of crowd-sourced lifelogs that can be regarded as a novel source to monitor massive crowds' lifestyles in the real world. In this paper, we challenge to analyze urban characteristics in terms of crowd behavior by utilizing the crowd lifelogs in urban area. In order to collect crowd behavioral data, we utilize Twitter where enormous numbers of geo-tagged crowd's micro lifelogs can be easily acquired. We model the crowd behavior on the social network sites as a feature, which will be used to derive crowd-based urban characteristics. Based on this crowd behavior feature, we analyze significant crowd behavioral patterns for extracting urban characteristics. In the experiment, we actually conduct the urban characterization over the crowd behavioral patterns using a large number of geo-tagged tweets found in Japan from Twitter and report a comparison result with map-based observation of cities as an evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人群的城市特征描述:从 Twitter 中提取城市地区的人群行为模式
基于位置的社交网站的出现提供了一个开放的众包生活日志共享空间,可被视为监测现实世界中大规模人群生活方式的新来源。在本文中,我们挑战利用城市地区的人群生活日志来分析人群行为的城市特征。为了收集人群行为数据,我们利用了 Twitter,因为在 Twitter 上可以轻松获取大量带有地理标签的人群微生活日志。我们将社交网站上的人群行为建模为一个特征,并利用该特征得出基于人群的城市特征。基于这一人群行为特征,我们分析了重要的人群行为模式,以提取城市特征。在实验中,我们利用从 Twitter 上找到的大量日本地理标记推文,通过人群行为模式实际进行了城市特征描述,并报告了与基于地图的城市观测结果的比较作为评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting location-based events with spatio-temporal storytelling VacationFinder: a tool for collecting, analyzing, and visualizing geotagged Twitter data to find top vacation spots Sophy: a morphological framework for structuring geo-referenced social media From where do tweets originate?: a GIS approach for user location inference WeiboStand: capturing Chinese breaking news using Weibo "tweets"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1