Memory-aware Optimization for Sequences of Sparse Matrix-Vector Multiplications

Yichen Zhang, Shengguo Li, Fan Yuan, Dezun Dong, Xiaojian Yang, Tiejun Li, Z. Wang
{"title":"Memory-aware Optimization for Sequences of Sparse Matrix-Vector Multiplications","authors":"Yichen Zhang, Shengguo Li, Fan Yuan, Dezun Dong, Xiaojian Yang, Tiejun Li, Z. Wang","doi":"10.1109/IPDPS54959.2023.00046","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to optimize multiple invocations of a sparse matrix-vector multiplication (SpMV) kernel performed on the same sparse matrix A and dense vector x, like Ax, A2x, ⋯, Akx, and their linear combinations such as Ax + A2x. Such computations are frequently used in scientific applications for solving linear equations and in multi-grid methods. Existing SpMV optimization techniques typically focus on a single SpMV invocation and do not consider opportunities for optimization across a sequence of SpMV operations (SSpMV), leaving much room for performance improvement. Our work aims to bridge this performance gap. It achieve this by partitioning the sparse matrix into submatrices and devising a new computation pipeline that reduces memory access to the sparse matrix and exploits the data locality of the dense vector of SpMV. Additionally, we demonstrate how our approach can be integrated with parallelization schemes to further improve performance. We evaluate our approach on four distinct multi-core systems, including three ARM and one Intel platform. Experimental results show that our techniques improve the standard implementation and the highly-optimized Intel math kernel library (MKL) by a large margin.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel approach to optimize multiple invocations of a sparse matrix-vector multiplication (SpMV) kernel performed on the same sparse matrix A and dense vector x, like Ax, A2x, ⋯, Akx, and their linear combinations such as Ax + A2x. Such computations are frequently used in scientific applications for solving linear equations and in multi-grid methods. Existing SpMV optimization techniques typically focus on a single SpMV invocation and do not consider opportunities for optimization across a sequence of SpMV operations (SSpMV), leaving much room for performance improvement. Our work aims to bridge this performance gap. It achieve this by partitioning the sparse matrix into submatrices and devising a new computation pipeline that reduces memory access to the sparse matrix and exploits the data locality of the dense vector of SpMV. Additionally, we demonstrate how our approach can be integrated with parallelization schemes to further improve performance. We evaluate our approach on four distinct multi-core systems, including three ARM and one Intel platform. Experimental results show that our techniques improve the standard implementation and the highly-optimized Intel math kernel library (MKL) by a large margin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏矩阵向量乘法序列的内存感知优化
本文提出了一种新的方法来优化对相同稀疏矩阵a和密集向量x(如Ax, A2x,⋯⋯,Akx)及其线性组合(如Ax + A2x)执行的稀疏矩阵向量乘法(SpMV)核的多次调用。这种计算在求解线性方程和多重网格方法的科学应用中经常使用。现有的SpMV优化技术通常侧重于单个SpMV调用,而没有考虑跨一系列SpMV操作(SSpMV)进行优化的机会,从而为性能改进留下了很大的空间。我们的工作旨在弥合这一绩效差距。它通过将稀疏矩阵划分为子矩阵并设计一个新的计算管道来实现这一目标,该管道减少了对稀疏矩阵的内存访问并利用了SpMV密集向量的数据局部性。此外,我们还演示了如何将我们的方法与并行化方案集成以进一步提高性能。我们在四种不同的多核系统上评估了我们的方法,包括三种ARM平台和一种英特尔平台。实验结果表明,我们的技术在很大程度上改进了标准实现和高度优化的Intel数学内核库(MKL)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1