Acceleration of Structural Analysis Simulations using CNN-based Auto-Tuning of Solver Tolerance

Amir Haderbache, Koichi Shirahata, T. Yamamoto, Y. Tomita, H. Okuda
{"title":"Acceleration of Structural Analysis Simulations using CNN-based Auto-Tuning of Solver Tolerance","authors":"Amir Haderbache, Koichi Shirahata, T. Yamamoto, Y. Tomita, H. Okuda","doi":"10.1109/IPDPSW50202.2020.00134","DOIUrl":null,"url":null,"abstract":"With the emergence of AI, we observe a surge of interest in applying machine learning to traditional HPC workloads. An example is the use of surrogate models that approximate the output of scientific simulations at very low latency. However, such a black-box approach usually suffers from significant accuracy loss. An alternative method is to leverage the large amount of data generated at simulations’ runtime to improve the efficiency of numerical methods. However, there is still no clear solution to apply AI inside HPC simulations. Thus, we propose to incorporate AI into structural analysis simulations and develop an auto-tuning of the iterative solver tolerance used in the Newton-Raphson method. We leverage residual data to train a performance model that is aware of the time-accuracy trade-off. By controlling the tuning using AI softmax probability values, we achieve 1.58x acceleration compared to traditional simulations and maintain accuracy with 1e-02 precision.","PeriodicalId":398819,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW50202.2020.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the emergence of AI, we observe a surge of interest in applying machine learning to traditional HPC workloads. An example is the use of surrogate models that approximate the output of scientific simulations at very low latency. However, such a black-box approach usually suffers from significant accuracy loss. An alternative method is to leverage the large amount of data generated at simulations’ runtime to improve the efficiency of numerical methods. However, there is still no clear solution to apply AI inside HPC simulations. Thus, we propose to incorporate AI into structural analysis simulations and develop an auto-tuning of the iterative solver tolerance used in the Newton-Raphson method. We leverage residual data to train a performance model that is aware of the time-accuracy trade-off. By controlling the tuning using AI softmax probability values, we achieve 1.58x acceleration compared to traditional simulations and maintain accuracy with 1e-02 precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于cnn自整定求解器公差的结构分析仿真加速
随着人工智能的出现,人们对将机器学习应用于传统的高性能计算工作负载的兴趣激增。一个例子是使用代理模型,以非常低的延迟近似科学模拟的输出。然而,这种黑盒方法通常会遭受严重的准确性损失。另一种方法是利用模拟运行时生成的大量数据来提高数值方法的效率。然而,在HPC模拟中应用AI仍然没有明确的解决方案。因此,我们建议将人工智能纳入结构分析模拟,并开发牛顿-拉夫森方法中使用的迭代求解器公差的自动调谐。我们利用残差数据来训练一个意识到时间-精度权衡的性能模型。通过使用AI softmax概率值控制调谐,与传统模拟相比,我们实现了1.58倍的加速度,并保持了1e-02的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDCunplugged: A Free Repository of Unplugged Parallel Distributed Computing Activities Competitive Evolution of a UAV Swarm for Improving Intruder Detection Rates Workshop 7: HPBDC High-Performance Big Data and Cloud Computing Teaching Cloud Computing: Motivations, Challenges and Tools Exploring Chapel Productivity Using Some Graph Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1