Auxiliary diagnosis model of children with autism spectrum disorder based on random forest

L. Yutong, Zhou Yong, Wang Jia, Ju Wenjing, Pan Shixu, Wang Luqian, Wang Yi-jun
{"title":"Auxiliary diagnosis model of children with autism spectrum disorder based on random forest","authors":"L. Yutong, Zhou Yong, Wang Jia, Ju Wenjing, Pan Shixu, Wang Luqian, Wang Yi-jun","doi":"10.16835/J.CNKI.1000-9817.2021.08.014","DOIUrl":null,"url":null,"abstract":"Objective The random forest algorithm was used to construct a rapid screening diagnostic prediction\n model for children with autism spectrum disorder, to provide the references for early\n detection, early diagnosis of ASD children, and to reduce the pressure of ASD clinical\n diagnosis and assessment.\n Methods The random forest algorithm of machine learning was applied to build the auxiliary\n diagnosis model. Totally 346 ASD children and 90 normal children were evaluated by\n Social Responsiveness Scale and Vineland Adaptive Behavior Scales. ROC curve, and\n accuracy was used to evaluate the models.\n Results Among the models, the accuracy of 13 feature factors and 7 feature factors were above\n 0.9, the sensitivity was up to 0.927, the specificity was up to 0.936 and the AUC was up to 0.979. The accuracy, sensitivity, specificity and AUC of the model were 0.943, 0.959, 0.931 and 0.978 respectively. The fitting and generalization\n effects of the three models were all satisfactory.\n Conclusion A random forest model based on the SRS Scales and Vineland Adaptive Behavior Scales\n can be used to diagnose ASD accurately and provide scientific basis for the development\n of rapid screening and diagnosis tools.\n 【摘要】 目的 利用随机森林算法构建孤独症谱系障碍(autism spectrum disorder, ASD)儿童快速辅助诊断模型, 有助于 ASD儿童的早期发现、早期诊断,\n 减轻临床诊断及评估压力。\n 方法 采用机器学习中随机森林算法, 应用社交反应量表 (SRS)及文兰适应行为量表(VABS)对黑龙江省 346 名 ASD 儿童和 90 名健康儿童进行评估, 并基于量表数据以及儿童基础信息构建预测模型,\n 运用 ROC 曲线及准确率等指标评价模型拟合效果。\n 结果 得到的随机森林预测模型中, 13 个特征因素模型以及 7 个特征因素的预测模型准确率均达到 0.9 以上、灵敏度最高达到 0.927, 特异度最高达到 0.936,\n AUC 值为 0.979; 以年龄为筛选条件的模型准确率达到 0.943, 灵敏度达到 0.959, 特异度达到 0.931, AWC 值为 0.978。3 个模型的拟合和泛化效果都较为理想。\n 结论 采用社交及适应能力水平指标构建的随机森林模型可以较为精确辅助开展 ASD 的诊断, 为开发快速筛查和诊断的辅助工具提供了科学依据。","PeriodicalId":106801,"journal":{"name":"Chinese Journal of School Health","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of School Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16835/J.CNKI.1000-9817.2021.08.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective The random forest algorithm was used to construct a rapid screening diagnostic prediction model for children with autism spectrum disorder, to provide the references for early detection, early diagnosis of ASD children, and to reduce the pressure of ASD clinical diagnosis and assessment. Methods The random forest algorithm of machine learning was applied to build the auxiliary diagnosis model. Totally 346 ASD children and 90 normal children were evaluated by Social Responsiveness Scale and Vineland Adaptive Behavior Scales. ROC curve, and accuracy was used to evaluate the models. Results Among the models, the accuracy of 13 feature factors and 7 feature factors were above 0.9, the sensitivity was up to 0.927, the specificity was up to 0.936 and the AUC was up to 0.979. The accuracy, sensitivity, specificity and AUC of the model were 0.943, 0.959, 0.931 and 0.978 respectively. The fitting and generalization effects of the three models were all satisfactory. Conclusion A random forest model based on the SRS Scales and Vineland Adaptive Behavior Scales can be used to diagnose ASD accurately and provide scientific basis for the development of rapid screening and diagnosis tools. 【摘要】 目的 利用随机森林算法构建孤独症谱系障碍(autism spectrum disorder, ASD)儿童快速辅助诊断模型, 有助于 ASD儿童的早期发现、早期诊断, 减轻临床诊断及评估压力。 方法 采用机器学习中随机森林算法, 应用社交反应量表 (SRS)及文兰适应行为量表(VABS)对黑龙江省 346 名 ASD 儿童和 90 名健康儿童进行评估, 并基于量表数据以及儿童基础信息构建预测模型, 运用 ROC 曲线及准确率等指标评价模型拟合效果。 结果 得到的随机森林预测模型中, 13 个特征因素模型以及 7 个特征因素的预测模型准确率均达到 0.9 以上、灵敏度最高达到 0.927, 特异度最高达到 0.936, AUC 值为 0.979; 以年龄为筛选条件的模型准确率达到 0.943, 灵敏度达到 0.959, 特异度达到 0.931, AWC 值为 0.978。3 个模型的拟合和泛化效果都较为理想。 结论 采用社交及适应能力水平指标构建的随机森林模型可以较为精确辅助开展 ASD 的诊断, 为开发快速筛查和诊断的辅助工具提供了科学依据。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林的儿童自闭症谱系障碍辅助诊断模型
目的运用随机森林算法构建自闭症谱系障碍儿童的快速筛查诊断预测模型,为ASD儿童的早期发现、早期诊断提供参考,减轻ASD临床诊断和评估的压力。方法采用机器学习中的随机森林算法建立辅助诊断模型。采用社会反应性量表和Vineland适应行为量表对346名ASD儿童和90名正常儿童进行了评估。ROC曲线,准确度评价模型。结果13个特征因子和7个特征因子的准确率均在0.9以上,灵敏度达0.927,特异度达0.936,AUC达0.979。模型的准确度、灵敏度、特异度和AUC分别为0.943、0.959、0.931和0.978。三种模型的拟合和泛化效果均令人满意。结论基于SRS量表和Vineland适应行为量表的随机森林模型可以准确诊断ASD,为开发快速筛查和诊断工具提供科学依据。【摘要】目的利用随机森林算法构建孤独症谱系障碍(孤独症谱系障碍,儿童快速辅助诊断模型,有助于自闭症儿童的早期发现,早期诊断,减轻临床诊断及评估压力。方法采用机器学习中随机森林算法,应用社交反应量表(SRS)及文兰适应行为量表(还有vab)对黑龙江省346名自闭症儿童和90名健康儿童进行评估,并基于量表数据以及儿童基础信息构建预测模型,运用ROC曲线及准确率等指标评价模型拟合效果。结果得到的随机森林预测模型中,13个特征因素模型以及7个特征因素的预测模型准确率均达0.9到以上,灵敏度最高达0.927到,特异度最高达0.936到,AUC值为0.979;以年龄为筛选条件的模型准确率达0.943到,灵敏度达0.959到,特异度达0.931到,风能网值为0.978。3 个模型的拟合和泛化效果都较为理想。 结论采用社交及适应能力水平指标构建的随机森林模型可以较为精确辅助开展ASD的诊断,为开发快速筛查和诊断的辅助工具提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of violent video games and other factors on aggressive behavior of junior high school students in Shanghai Analysis of risk factors for vasovagal syncope in children Prevalence of eating out and its association with overweight and obesity among children and adolescents in Hebei Province Psychoactive substance abuse and associated factors among middle school students in Liaoning Relationship between classroom lighting and poor vision of students in primary and secondary schools in Tianjin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1