A Novel Chinese Reading Comprehension Model Based on Attention Mechanism and Convolutional Neural Networks

C. Fahn, Yi-Lun Wang, Chu-Ping Lee
{"title":"A Novel Chinese Reading Comprehension Model Based on Attention Mechanism and Convolutional Neural Networks","authors":"C. Fahn, Yi-Lun Wang, Chu-Ping Lee","doi":"10.1109/ICMLC51923.2020.9469533","DOIUrl":null,"url":null,"abstract":"This paper presents a novel machine reading comprehension model based on deep learning techniques in Chinese environment. In our manner, the training process can be performed using a general-level GPU, and the convergence of the training process can be accelerated for a shorter period of time. In the architectural design, two main constituting parts include Self-Attention Mechanism and Convolutional Neural Networks. To enhance the interaction between an article and questions, we carry out the operation of Context-Query Attention twice, so that our model is more effectively for acquiring the information of the questions related to the article and converges faster while training. In the experiment, we adopt the Delta Reading Comprehension Dataset for model evaluation in Chinese environment. The experimental results reveal that our model is able to reach the accuracy of 64.9% for EM and 79.0% for Fl. The convergence time is less than 1 hour using the Titan XP GPU, and the memory usage is comparatively lower. The training performance is about 3 times faster than other models with state- of-the-art architecture.","PeriodicalId":170815,"journal":{"name":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC51923.2020.9469533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel machine reading comprehension model based on deep learning techniques in Chinese environment. In our manner, the training process can be performed using a general-level GPU, and the convergence of the training process can be accelerated for a shorter period of time. In the architectural design, two main constituting parts include Self-Attention Mechanism and Convolutional Neural Networks. To enhance the interaction between an article and questions, we carry out the operation of Context-Query Attention twice, so that our model is more effectively for acquiring the information of the questions related to the article and converges faster while training. In the experiment, we adopt the Delta Reading Comprehension Dataset for model evaluation in Chinese environment. The experimental results reveal that our model is able to reach the accuracy of 64.9% for EM and 79.0% for Fl. The convergence time is less than 1 hour using the Titan XP GPU, and the memory usage is comparatively lower. The training performance is about 3 times faster than other models with state- of-the-art architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于注意机制和卷积神经网络的汉语阅读理解模型
提出了一种基于深度学习技术的中文环境下机器阅读理解模型。在我们的方法中,训练过程可以使用通用级GPU来执行,并且可以在更短的时间内加速训练过程的收敛。在架构设计中,自注意机制和卷积神经网络是两个主要组成部分。为了增强文章与问题之间的交互性,我们进行了两次上下文查询关注操作,使我们的模型能够更有效地获取文章相关问题的信息,并且在训练时收敛速度更快。在实验中,我们采用Delta阅读理解数据集进行中文环境下的模型评价。实验结果表明,我们的模型在EM和Fl上的准确率分别达到64.9%和79.0%,在Titan XP GPU上的收敛时间小于1小时,并且内存占用相对较低。训练性能比其他具有最先进架构的模型快3倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral Decision Makings: Reconciling Behavioral Economics and Decision Systems Operating System Classification: A Minimalist Approach Research on Hotspot Mining Method of Twitter News Report Based on LDA and Sentiment Analysis Conservative Generalisation for Small Data Analytics –An Extended Lattice Machine Approach ICMLC 2020 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1