3D-DSPnet: Product Disassembly Sequence Planning

Abhinav Upadhyay, Bharat Ladrecha, Alpana Dubey, Suma Mani Kuriakose, P. Goenka
{"title":"3D-DSPnet: Product Disassembly Sequence Planning","authors":"Abhinav Upadhyay, Bharat Ladrecha, Alpana Dubey, Suma Mani Kuriakose, P. Goenka","doi":"10.1109/ICMEW56448.2022.9859434","DOIUrl":null,"url":null,"abstract":"Product Disassembly has become an area of active research as it supports sustainable development by aiding effective end-of-life (EOL) stage strategies like reuse, re-manufacturing, recycling, etc. In this work, we propose a new approach, 3D-DSPNet, that can utilize 3D data from CAD assembly models to generate a feasible disassembly sequence. Our approach uses Graph-based learning to process the graph representation of CAD models. Currently, the available 3D CAD model datasets lack ground truth disassembly sequences. We propose and curate a new dataset, the 3D-DSP dataset, which includes ground truth information about the disassembly sequence for 3D product models. We carry out evaluation and analysis of results to explain the efficacy of the proposed method. Our approach significantly outperforms the existing baseline. We develop an Autodesk Fusion 360 plug-in that generates disassembly sequence animation, allowing intuitive analysis of the disassembly plan.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Product Disassembly has become an area of active research as it supports sustainable development by aiding effective end-of-life (EOL) stage strategies like reuse, re-manufacturing, recycling, etc. In this work, we propose a new approach, 3D-DSPNet, that can utilize 3D data from CAD assembly models to generate a feasible disassembly sequence. Our approach uses Graph-based learning to process the graph representation of CAD models. Currently, the available 3D CAD model datasets lack ground truth disassembly sequences. We propose and curate a new dataset, the 3D-DSP dataset, which includes ground truth information about the disassembly sequence for 3D product models. We carry out evaluation and analysis of results to explain the efficacy of the proposed method. Our approach significantly outperforms the existing baseline. We develop an Autodesk Fusion 360 plug-in that generates disassembly sequence animation, allowing intuitive analysis of the disassembly plan.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D-DSPnet:产品拆卸顺序规划
产品拆解已经成为一个活跃的研究领域,因为它通过帮助有效的生命周期结束(EOL)阶段策略(如再利用、再制造、再循环等)来支持可持续发展。在这项工作中,我们提出了一种新的方法,3D- dspnet,它可以利用CAD装配模型的3D数据来生成可行的拆卸序列。我们的方法使用基于图的学习来处理CAD模型的图表示。目前,现有的三维CAD模型数据集缺乏ground truth拆卸序列。我们提出并策划了一个新的数据集,3D- dsp数据集,其中包括关于3D产品模型拆卸序列的真实信息。我们对结果进行了评价和分析,以解释所提出方法的有效性。我们的方法明显优于现有的基线。我们开发了一个Autodesk Fusion 360插件,生成拆卸序列动画,允许直观地分析拆卸计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Quality Evaluation for Generated Music Based on Emotion Recognition Model Bottleneck Detection in Crowded Video Scenes Utilizing Lagrangian Motion Analysis Via Density and Arc Length Measures Efficient Topology Coding and Payload Partitioning Techniques for Neural Network Compression (NNC) Standard Exploring Multisensory Feedback for Virtual Reality Relaxation A Unified Video Summarization for Video Anomalies Through Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1