Memory-Immersed Collaborative Digitization for Area-Efficient Compute-in-Memory Deep Learning

Shamma Nasrin, Maeesha Binte Hashem, Nastaran Darabi, Benjamin Parpillon, F. Fahim, Wilfred Gomes, A. Trivedi
{"title":"Memory-Immersed Collaborative Digitization for Area-Efficient Compute-in-Memory Deep Learning","authors":"Shamma Nasrin, Maeesha Binte Hashem, Nastaran Darabi, Benjamin Parpillon, F. Fahim, Wilfred Gomes, A. Trivedi","doi":"10.1109/AICAS57966.2023.10168632","DOIUrl":null,"url":null,"abstract":"This work discusses memory-immersed collaborative digitization among compute-in-memory (CiM) arrays to minimize the area overheads of a conventional analog-to-digital converter (ADC) for deep learning inference. Thereby, using the proposed scheme, significantly more CiM arrays can be accommodated within limited footprint designs to improve parallelism and minimize external memory accesses. Under the digitization scheme, CiM arrays exploit their parasitic bit lines to form a within-memory capacitive digital-to-analog converter (DAC) that facilitates area-efficient successive approximation (SA) digitization. CiM arrays collaborate where a proximal array digitizes the analog-domain product-sums when an array computes the scalar product of input and weights. We discuss various networking configurations among CiM arrays where Flash, SA, and their hybrid digitization steps can be efficiently implemented using the proposed memory-immersed scheme. The results are demonstrated using a 65 nm CMOS test chip. Compared to a 40 nm-node 5-bit SAR ADC, our 65 nm design requires ~25 area× less and ∼1.4× less energy by leveraging in-memory computing structures. Compared to a 40 nm-node 5-bit Flash ADC, our design requires ∼51× less area and ∼13× less energy.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work discusses memory-immersed collaborative digitization among compute-in-memory (CiM) arrays to minimize the area overheads of a conventional analog-to-digital converter (ADC) for deep learning inference. Thereby, using the proposed scheme, significantly more CiM arrays can be accommodated within limited footprint designs to improve parallelism and minimize external memory accesses. Under the digitization scheme, CiM arrays exploit their parasitic bit lines to form a within-memory capacitive digital-to-analog converter (DAC) that facilitates area-efficient successive approximation (SA) digitization. CiM arrays collaborate where a proximal array digitizes the analog-domain product-sums when an array computes the scalar product of input and weights. We discuss various networking configurations among CiM arrays where Flash, SA, and their hybrid digitization steps can be efficiently implemented using the proposed memory-immersed scheme. The results are demonstrated using a 65 nm CMOS test chip. Compared to a 40 nm-node 5-bit SAR ADC, our 65 nm design requires ~25 area× less and ∼1.4× less energy by leveraging in-memory computing structures. Compared to a 40 nm-node 5-bit Flash ADC, our design requires ∼51× less area and ∼13× less energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向区域高效内存计算深度学习的沉浸式协同数字化
这项工作讨论了内存中计算(CiM)阵列之间的内存沉浸式协作数字化,以最大限度地减少用于深度学习推理的传统模数转换器(ADC)的面积开销。因此,使用所提出的方案,可以在有限的内存占用设计中容纳更多的CiM阵列,从而提高并行性并最大限度地减少外部内存访问。在数字化方案下,CiM阵列利用其寄生位线形成内存内电容数模转换器(DAC),促进面积高效连续逼近(SA)数字化。CiM阵列协作时,当阵列计算输入和权重的标量积时,近端阵列将模拟域积和数字化。我们讨论了CiM阵列之间的各种网络配置,其中Flash, SA及其混合数字化步骤可以使用所提出的内存浸入式方案有效地实现。结果用65纳米CMOS测试芯片进行了验证。与40 nm节点的5位SAR ADC相比,我们的65 nm设计通过利用内存计算结构,减少了~25 area×和~ 1.4×的能量。与40nm节点的5位Flash ADC相比,我们的设计所需面积减少~ 51x,能耗减少~ 13x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1