ERDS-pe: A paired hidden Markov model for copy number variant detection from whole-exome sequencing data

Renjie Tan, Jixuan Wang, Xiaoliang Wu, Guoqiang Wan, Rongjie Wang, Rui Ma, Zhijie Han, Wenyang Zhou, Shuilin Jin, Qinghua Jiang, Yadong Wang
{"title":"ERDS-pe: A paired hidden Markov model for copy number variant detection from whole-exome sequencing data","authors":"Renjie Tan, Jixuan Wang, Xiaoliang Wu, Guoqiang Wan, Rongjie Wang, Rui Ma, Zhijie Han, Wenyang Zhou, Shuilin Jin, Qinghua Jiang, Yadong Wang","doi":"10.1109/BIBM.2016.7822508","DOIUrl":null,"url":null,"abstract":"Detecting copy number variants (CNVs) is an essential part in variant calling process. Here, we describe a novel method ERDS-pe to detect CNVs from whole-exome sequencing (WES) data. ERDS-pe first employs principal component analysis to normalize WES data. Then, ERDS-pe incorporates read depth signal and single-nucleotide variation information together as a hybrid signal into a paired hidden Markov model to infer CNVs from WES data. Experimental results on real human WES data show that ERDS-pe demonstrates higher sensitivity and provides comparable or even better specificity than other tools. ERDS-pe is publicly available at: https://github.com/microtan0902/erds-pe.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detecting copy number variants (CNVs) is an essential part in variant calling process. Here, we describe a novel method ERDS-pe to detect CNVs from whole-exome sequencing (WES) data. ERDS-pe first employs principal component analysis to normalize WES data. Then, ERDS-pe incorporates read depth signal and single-nucleotide variation information together as a hybrid signal into a paired hidden Markov model to infer CNVs from WES data. Experimental results on real human WES data show that ERDS-pe demonstrates higher sensitivity and provides comparable or even better specificity than other tools. ERDS-pe is publicly available at: https://github.com/microtan0902/erds-pe.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ERDS-pe:从全外显子组测序数据中检测拷贝数变异的配对隐马尔可夫模型
拷贝数变异的检测是变异调用过程中的一个重要环节。在这里,我们描述了一种从全外显子组测序(WES)数据中检测CNVs的新方法ERDS-pe。erds - type首先采用主成分分析对WES数据进行归一化处理。然后,ERDS-pe将读取深度信号和单核苷酸变异信息作为混合信号结合到配对隐马尔可夫模型中,从WES数据中推断CNVs。在真实人体WES数据上的实验结果表明,ERDS-pe具有更高的灵敏度,并且具有与其他工具相当甚至更好的特异性。ERDS-pe可在:https://github.com/microtan0902/erds-pe公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1