Detection of the C-terminal Propeptide of Proaerolysin by Aerolysin Nanopore

Anqi Zhu, Pinyao He, Haiyan Wang, Yunfei Chen
{"title":"Detection of the C-terminal Propeptide of Proaerolysin by Aerolysin Nanopore","authors":"Anqi Zhu, Pinyao He, Haiyan Wang, Yunfei Chen","doi":"10.1109/3M-NANO56083.2022.9941648","DOIUrl":null,"url":null,"abstract":"Electrophysiological studies of the interaction of polymers with bacterial pores provide a stratagem for single molecule detection. Aerolysin (AeL) nanopore is a promising emerging bacterial nanopore that has been extensively used for single nucleotide discrimination of very short oligonucleotides (<10 nt) with labeling. Due to its narrow constriction which is approximate 1.4 nm and highly charged pore lumen, AeL nanopore exhibits a high sensitivity in short peptide and DNA detection. Before forming the bacterial nanopore, aerolysin monomer was usually conversed from proaerolysin by activated with trypsin. The C-terminal peptide (CTP) part of proaerolysin was cleavage and the remaining part is defined as the aerolysin monomer. The CTP peptide is not uniformly charged with electrostatic distribution as positive-negative-neutral in neutral buffer solution. Here we investigated the structure of CTP during translocation through aerolysin nanopore under applied potential. The result based on characteristic blockages showed that the capture and translocation of the peptides are governed by the charged residues in the pore lumen and the potential applied.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrophysiological studies of the interaction of polymers with bacterial pores provide a stratagem for single molecule detection. Aerolysin (AeL) nanopore is a promising emerging bacterial nanopore that has been extensively used for single nucleotide discrimination of very short oligonucleotides (<10 nt) with labeling. Due to its narrow constriction which is approximate 1.4 nm and highly charged pore lumen, AeL nanopore exhibits a high sensitivity in short peptide and DNA detection. Before forming the bacterial nanopore, aerolysin monomer was usually conversed from proaerolysin by activated with trypsin. The C-terminal peptide (CTP) part of proaerolysin was cleavage and the remaining part is defined as the aerolysin monomer. The CTP peptide is not uniformly charged with electrostatic distribution as positive-negative-neutral in neutral buffer solution. Here we investigated the structure of CTP during translocation through aerolysin nanopore under applied potential. The result based on characteristic blockages showed that the capture and translocation of the peptides are governed by the charged residues in the pore lumen and the potential applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气溶素纳米孔检测原气溶素c端前肽
聚合物与细菌孔隙相互作用的电生理学研究为单分子检测提供了一种策略。Aerolysin (AeL)纳米孔是一种很有前途的新兴细菌纳米孔,已广泛用于标记极短寡核苷酸(<10 nt)的单核苷酸鉴定。由于其约1.4 nm的狭窄收缩和高电荷的孔腔,AeL纳米孔在短肽和DNA检测中表现出很高的灵敏度。在形成细菌纳米孔之前,溶气素单体通常由原溶气素经胰蛋白酶活化转化而成。原裂解素的c端肽(CTP)部分被裂解,其余部分被定义为裂解素单体。CTP肽在中性缓冲液中不均匀带电,呈正负中性静电分布。本文研究了在外加电位作用下CTP通过气溶纳米孔转运时的结构。基于特征堵塞的结果表明,多肽的捕获和转运受孔腔内带电残基和施加电位的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Buffer Solution and Concentration on AFM Imaging of DNA Molecules Electrochemical Dissolution Behavior of GH4169 and K418 Superalloy in NaNO3 Solution at Low Current Density A Stiffness-tunable MEMS Accelerometer with In-operation Drift Compensation Kinematic Calibration in Local Assembly Space of a Six-axis Industrial Robot for Precise Assembly Design and Analysis of Novel Millimetre-level Compliant Constant-force Mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1