Discovering Significant Patterns in Multi-stream Sequences

Robert Gwadera, F. Crestani
{"title":"Discovering Significant Patterns in Multi-stream Sequences","authors":"Robert Gwadera, F. Crestani","doi":"10.1109/ICDM.2008.146","DOIUrl":null,"url":null,"abstract":"Discovering significant patterns in synchronized multi-stream sequences also known as multi-attribute event sequences (multi-sequences), is an important problem in many domains, including monitoring systems and information retrieval. In this paper we propose a new approach for assessing significance of multi-stream patterns in multi-attribute event sequences. In experiments on physiological multi-stream data we show applicability of our method.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Discovering significant patterns in synchronized multi-stream sequences also known as multi-attribute event sequences (multi-sequences), is an important problem in many domains, including monitoring systems and information retrieval. In this paper we propose a new approach for assessing significance of multi-stream patterns in multi-attribute event sequences. In experiments on physiological multi-stream data we show applicability of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现多流序列中的重要模式
在同步多流序列(也称为多属性事件序列)中发现重要的模式,是监控系统和信息检索等许多领域的重要问题。本文提出了一种评估多属性事件序列中多流模式重要性的新方法。在生理多流数据实验中,证明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1