Software reliability modelling and prediction with hidden Markov chains

Jean-Baptiste Durand, O. Gaudoin
{"title":"Software reliability modelling and prediction with hidden Markov chains","authors":"Jean-Baptiste Durand, O. Gaudoin","doi":"10.1191/1471082X05st087oa","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to use the framework of hidden Markov chains (HMCs) for the modelling of the failure and debugging process of software, and the prediction of software reliability. The model parameters are estimated using the forward-backward expectation maximization algorithm, and model selection is done with the Bayesian information criterion. The advantages and drawbacks of this approach, with respect to usual modelling, are analysed. Comparison is also done on real software failure data. The main contribution of HMC modelling is that it highlights the existence of homogeneous periods in the debugging process, which allow one to identify major corrections or version updates. In terms of reliability predictions, the HMC model performs well, on average, with respect to usual models, especially when the reliability is not regularly growing.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X05st087oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

The purpose of this paper is to use the framework of hidden Markov chains (HMCs) for the modelling of the failure and debugging process of software, and the prediction of software reliability. The model parameters are estimated using the forward-backward expectation maximization algorithm, and model selection is done with the Bayesian information criterion. The advantages and drawbacks of this approach, with respect to usual modelling, are analysed. Comparison is also done on real software failure data. The main contribution of HMC modelling is that it highlights the existence of homogeneous periods in the debugging process, which allow one to identify major corrections or version updates. In terms of reliability predictions, the HMC model performs well, on average, with respect to usual models, especially when the reliability is not regularly growing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隐马尔可夫链的软件可靠性建模与预测
本文的目的是利用隐马尔可夫链(hmc)框架对软件的故障和调试过程进行建模,并预测软件的可靠性。模型参数估计采用前向-后向期望最大化算法,模型选择采用贝叶斯信息准则。分析了这种方法相对于通常的建模方法的优点和缺点。并与实际软件故障数据进行了比较。HMC建模的主要贡献在于它突出了调试过程中同构阶段的存在,这允许人们识别主要的更正或版本更新。在可靠性预测方面,相对于通常的模型,HMC模型平均表现良好,特别是当可靠性不定期增长时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1