{"title":"Self-adaptation in Automotive Embedded Systems using a Multi-layered Control Approach","authors":"M. Zeller, C. Prehofer","doi":"10.5220/0003942304590468","DOIUrl":null,"url":null,"abstract":"In this work, we present an approach for self-adaptation in automotive embedded systems using a hierarchical, multi-layered control approach. We model automotive systems as a set of constraints and define a hierarchy of control loops based on different criteria. Adaptations are performed at first locally on a lower layer of the architecture. If this fails due to the restricted scope of the control cycle, the next higher layer is in charge of finding a suitable adaptation. We compare different options regarding responsibility split in multi-layered control and a version with centralized control option, in a self-healing scenario with a setup adopted from automotive in-vehicle networks. We show that a multi-layer control architecture has clear performance benefits over a central control, even though all layers work on the same set of constraints. Furthermore, we show that a responsibility split w.r.t. network topology is preferable over a functional split.","PeriodicalId":298357,"journal":{"name":"International Conference on Pervasive and Embedded Computing and Communication Systems","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pervasive and Embedded Computing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003942304590468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, we present an approach for self-adaptation in automotive embedded systems using a hierarchical, multi-layered control approach. We model automotive systems as a set of constraints and define a hierarchy of control loops based on different criteria. Adaptations are performed at first locally on a lower layer of the architecture. If this fails due to the restricted scope of the control cycle, the next higher layer is in charge of finding a suitable adaptation. We compare different options regarding responsibility split in multi-layered control and a version with centralized control option, in a self-healing scenario with a setup adopted from automotive in-vehicle networks. We show that a multi-layer control architecture has clear performance benefits over a central control, even though all layers work on the same set of constraints. Furthermore, we show that a responsibility split w.r.t. network topology is preferable over a functional split.