Self-adaptation in Automotive Embedded Systems using a Multi-layered Control Approach

M. Zeller, C. Prehofer
{"title":"Self-adaptation in Automotive Embedded Systems using a Multi-layered Control Approach","authors":"M. Zeller, C. Prehofer","doi":"10.5220/0003942304590468","DOIUrl":null,"url":null,"abstract":"In this work, we present an approach for self-adaptation in automotive embedded systems using a hierarchical, multi-layered control approach. We model automotive systems as a set of constraints and define a hierarchy of control loops based on different criteria. Adaptations are performed at first locally on a lower layer of the architecture. If this fails due to the restricted scope of the control cycle, the next higher layer is in charge of finding a suitable adaptation. We compare different options regarding responsibility split in multi-layered control and a version with centralized control option, in a self-healing scenario with a setup adopted from automotive in-vehicle networks. We show that a multi-layer control architecture has clear performance benefits over a central control, even though all layers work on the same set of constraints. Furthermore, we show that a responsibility split w.r.t. network topology is preferable over a functional split.","PeriodicalId":298357,"journal":{"name":"International Conference on Pervasive and Embedded Computing and Communication Systems","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pervasive and Embedded Computing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003942304590468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we present an approach for self-adaptation in automotive embedded systems using a hierarchical, multi-layered control approach. We model automotive systems as a set of constraints and define a hierarchy of control loops based on different criteria. Adaptations are performed at first locally on a lower layer of the architecture. If this fails due to the restricted scope of the control cycle, the next higher layer is in charge of finding a suitable adaptation. We compare different options regarding responsibility split in multi-layered control and a version with centralized control option, in a self-healing scenario with a setup adopted from automotive in-vehicle networks. We show that a multi-layer control architecture has clear performance benefits over a central control, even though all layers work on the same set of constraints. Furthermore, we show that a responsibility split w.r.t. network topology is preferable over a functional split.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多层控制方法的汽车嵌入式系统自适应
在这项工作中,我们提出了一种在汽车嵌入式系统中使用分层、多层控制方法进行自适应的方法。我们将汽车系统建模为一组约束,并根据不同的标准定义了控制回路的层次结构。调整首先在体系结构的较低层本地执行。如果由于控制周期的范围有限而失败,则下一层负责寻找合适的适应。我们比较了多层控制中责任划分的不同选项,以及采用汽车车载网络设置的自修复场景中具有集中控制选项的版本。我们表明,多层控制体系结构比中央控制具有明显的性能优势,即使所有层都在同一组约束上工作。此外,我们还展示了责任分割w.r.t.网络拓扑比功能分割更可取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two Approaches to Resource Allocation in Hybrid Fog and Cloud Systems On Verify and Validate a Next Generation Automotive Communication Networka Interdependent Multi-layer Spatial Temporal-based Caching in Heterogeneous Mobile Edge and Fog Networks Security for Low-end Automotive Sensors: A Tire-pressure and Rain-light Sensors Case Study Influence of Emotions on Software Developer Productivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1