Decision methods in dynamic system identification

J. Moore, R. Hawkes
{"title":"Decision methods in dynamic system identification","authors":"J. Moore, R. Hawkes","doi":"10.1109/CDC.1975.270585","DOIUrl":null,"url":null,"abstract":"The performance of Bayesian maximum a posteriori (MAP) decision methods for dynamic system identification is investigated. By examining a finite set of a posteriori probabilities a decision is made as to which of several possible regions of the parameter space the true parameter value lies. It is shown that for the true parameter value in a prescribed region the corresponding a posteriori probability converges exponentially (mean square) to 1. The analysis is based on the asymptotic per sample formula for the Kullback information function, which is derived in this paper. We believe that the properties of Bayesian MAP decision methods discussed in this paper make them useful for application in dynamic system identification in conjunction with standard techniques such as the maximum likelihood (ML) method.","PeriodicalId":164707,"journal":{"name":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1975.270585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The performance of Bayesian maximum a posteriori (MAP) decision methods for dynamic system identification is investigated. By examining a finite set of a posteriori probabilities a decision is made as to which of several possible regions of the parameter space the true parameter value lies. It is shown that for the true parameter value in a prescribed region the corresponding a posteriori probability converges exponentially (mean square) to 1. The analysis is based on the asymptotic per sample formula for the Kullback information function, which is derived in this paper. We believe that the properties of Bayesian MAP decision methods discussed in this paper make them useful for application in dynamic system identification in conjunction with standard techniques such as the maximum likelihood (ML) method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态系统辨识中的决策方法
研究了贝叶斯极大后验决策方法在动态系统辨识中的性能。通过检验一组有限的后验概率,决定参数空间的几个可能区域中哪一个是真正的参数值。结果表明,对于给定区域内的真参数值,相应的后验概率指数收敛(均方)为1。该分析基于本文导出的Kullback信息函数的渐近单样本公式。我们相信,本文讨论的贝叶斯MAP决策方法的性质使它们能够与诸如最大似然(ML)方法等标准技术一起用于动态系统识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive analysis of digital images: A systems design overview Automation possibilities in air traffic control Parameter estimation using pseudo-random binary signals Man and machine, a matching problem On solution, stability, and transformation of linear time-varying systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1