Aadhavan M. Nambhi, Bhanu Prakash Reddy Guda, Aarsh Prakash Agarwal, Gaurav Verma, Harvineet Singh, I. Burhanuddin
{"title":"Stuck? No worries!: Task-aware Command Recommendation and Proactive Help for Analysts","authors":"Aadhavan M. Nambhi, Bhanu Prakash Reddy Guda, Aarsh Prakash Agarwal, Gaurav Verma, Harvineet Singh, I. Burhanuddin","doi":"10.1145/3320435.3320477","DOIUrl":null,"url":null,"abstract":"Data analytics software applications have become an integral part of the decision-making process of analysts. Users of such a software face challenges due to insufficient product and domain knowledge, and find themselves in need of help. To alleviate this, we propose a task-aware command recommendation system, to guide the user on what commands could be executed next. We rely on topic modeling techniques to incorporate information about user's task into our models. We also present a help prediction model to detect if a user is in need of help, in which case the system proactively provides the aforementioned command recommendations. We leverage the log data of a web-based analytics software to quantify the superior performance of our neural models, in comparison to competitive baselines.","PeriodicalId":254537,"journal":{"name":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3320435.3320477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Data analytics software applications have become an integral part of the decision-making process of analysts. Users of such a software face challenges due to insufficient product and domain knowledge, and find themselves in need of help. To alleviate this, we propose a task-aware command recommendation system, to guide the user on what commands could be executed next. We rely on topic modeling techniques to incorporate information about user's task into our models. We also present a help prediction model to detect if a user is in need of help, in which case the system proactively provides the aforementioned command recommendations. We leverage the log data of a web-based analytics software to quantify the superior performance of our neural models, in comparison to competitive baselines.