Topics' popularity prediction based on ARMA model

Yichen Song, Aiping Li, Yong Quan
{"title":"Topics' popularity prediction based on ARMA model","authors":"Yichen Song, Aiping Li, Yong Quan","doi":"10.1145/3208788.3208799","DOIUrl":null,"url":null,"abstract":"With the rapid development of information technology and the widespread application of information, social networks are becoming more convenient and faster tools for information release and acquisition. Predicting topic popularity is important for online referral systems, marketing services and public opinion controls. In this paper, we predict the popularity of topics with the help of time series analysis methods, verifying the validity of ARMA model in topic popularity prediction.","PeriodicalId":211585,"journal":{"name":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208788.3208799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid development of information technology and the widespread application of information, social networks are becoming more convenient and faster tools for information release and acquisition. Predicting topic popularity is important for online referral systems, marketing services and public opinion controls. In this paper, we predict the popularity of topics with the help of time series analysis methods, verifying the validity of ARMA model in topic popularity prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ARMA模型的话题热度预测
随着信息技术的飞速发展和信息的广泛应用,社交网络正成为信息发布和获取的更方便、更快捷的工具。预测话题受欢迎程度对在线推荐系统、营销服务和舆论控制都很重要。本文利用时间序列分析方法对话题流行度进行预测,验证了ARMA模型在话题流行度预测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-point boundary value problems for fuzzy differential equations under generalized differentiability Background subtraction via online box constrained RPCA Bayesian analysis for multivariate skew-normal reproductive dispersion random effects models A diversity-based method for class-imbalanced cost-sensitive learning The Merrifield-Simmons index of two classes of lexicographic product graphs of corona graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1