Classification of diabetes disease using TCM electronic nose signals and ensemble learning

Qiang Li, Li-sang Liu, Fan Yang, Zhezhou Zheng, Xuejuan Lin, Qingqing Wu
{"title":"Classification of diabetes disease using TCM electronic nose signals and ensemble learning","authors":"Qiang Li, Li-sang Liu, Fan Yang, Zhezhou Zheng, Xuejuan Lin, Qingqing Wu","doi":"10.1109/ICCSE.2014.6926513","DOIUrl":null,"url":null,"abstract":"Diabetes is one of the most prevalent diseases in medical field. We propose an ensemble method for diagnosis of diabetes on traditional Chinese medicine electronic nose signals. To evaluate the effectiveness of our method, we carry out the experiments by comparing single classifier with ensemble classifiers based on support vector machine and logistic classification model. The proposed method shows better classification performance with accuracy of 88.04%. The results of this study show that ensemble method is effective to detect diabetes.","PeriodicalId":275003,"journal":{"name":"2014 9th International Conference on Computer Science & Education","volume":"36 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Science & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2014.6926513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Diabetes is one of the most prevalent diseases in medical field. We propose an ensemble method for diagnosis of diabetes on traditional Chinese medicine electronic nose signals. To evaluate the effectiveness of our method, we carry out the experiments by comparing single classifier with ensemble classifiers based on support vector machine and logistic classification model. The proposed method shows better classification performance with accuracy of 88.04%. The results of this study show that ensemble method is effective to detect diabetes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用中医电子鼻信号和集成学习对糖尿病疾病进行分类
糖尿病是医学领域最常见的疾病之一。提出了一种基于中医电子鼻信号的糖尿病综合诊断方法。为了评估该方法的有效性,我们将基于支持向量机和逻辑分类模型的单个分类器与集成分类器进行了对比实验。该方法具有较好的分类性能,准确率为88.04%。本研究结果表明,集成方法是检测糖尿病的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the situation analysis model of social network relation based on set pair connection potential A new method of learning: M-Learning (Mobile Learning) Using an e-talk pen to promote phonological awareness on communication training Benefits of an introductory course in computer game development Probe into setting up big data processing specialty in Chinese universities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1