Forecasting of traffic variations from their preceding dynamics: Parametric vs non-parametric approaches

Eugene O. Belyakin, Maria A. Markelova, M. Bogachev
{"title":"Forecasting of traffic variations from their preceding dynamics: Parametric vs non-parametric approaches","authors":"Eugene O. Belyakin, Maria A. Markelova, M. Bogachev","doi":"10.1109/MECO58584.2023.10155105","DOIUrl":null,"url":null,"abstract":"Internet traffic intensity variations contain significant information on the access pattern dynamics. On the one hand, variability in access patterns is a direct manifestation of the end users' and IoT devices behavior. On the other hand, a better understanding of the access pattern dynamics provides essential information for an early redistribution of traffic, leading to potentially more efficient dynamic routing algorithms. Traffic in large networks is typically governed by a complex interplay of auto-and cross-correlation patterns that largely determine its non-stationary nature. Here we have considered two approaches to the identification of the traffic variation model. The first approach is parametric and focuses on fitting the parameters of Seasonal Auto Regressive Integrated Moving Average with exogenous factors (SARIMAX). The second approach is based on training of a recurrent neural network (RNN). Both approaches have been validated explicitly using traffic data records over several days of monitoring at the uplink of a local campus network.","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10155105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Internet traffic intensity variations contain significant information on the access pattern dynamics. On the one hand, variability in access patterns is a direct manifestation of the end users' and IoT devices behavior. On the other hand, a better understanding of the access pattern dynamics provides essential information for an early redistribution of traffic, leading to potentially more efficient dynamic routing algorithms. Traffic in large networks is typically governed by a complex interplay of auto-and cross-correlation patterns that largely determine its non-stationary nature. Here we have considered two approaches to the identification of the traffic variation model. The first approach is parametric and focuses on fitting the parameters of Seasonal Auto Regressive Integrated Moving Average with exogenous factors (SARIMAX). The second approach is based on training of a recurrent neural network (RNN). Both approaches have been validated explicitly using traffic data records over several days of monitoring at the uplink of a local campus network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测交通变化从他们之前的动态:参数与非参数方法
互联网流量强度变化包含了访问模式动态的重要信息。一方面,访问模式的可变性是最终用户和物联网设备行为的直接表现。另一方面,更好地理解访问模式动态可以为流量的早期重新分配提供必要的信息,从而产生更有效的动态路由算法。大型网络中的流量通常由自动和相互关联模式的复杂相互作用控制,这些模式在很大程度上决定了其非平稳性质。在这里,我们考虑了两种方法来识别交通变化模型。第一种方法是参数化方法,重点是拟合带有外生因子的季节自回归综合移动平均(SARIMAX)参数。第二种方法是基于循环神经网络(RNN)的训练。这两种方法都通过对本地校园网上行链路进行数天监控的流量数据记录得到了明确的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Blockchain Platforms for Generation and Verification of Diplomas Minimizing the Total Completion Time of Jobs for a Permutation Flow-Shop System Double Buffered Angular Speed Measurement Method for Self-Calibration of Magnetoresistive Sensors Quantum Resilient Public Key Cryptography in Internet of Things Crop yield forecasting with climate data using PCA and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1