ZEST: A Hybrid Model on Predicting Passenger Demand for Chauffeured Car Service

Hua Wei, Yuandong Wang, Tianyu Wo, Yaxiao Liu, Jie Xu
{"title":"ZEST: A Hybrid Model on Predicting Passenger Demand for Chauffeured Car Service","authors":"Hua Wei, Yuandong Wang, Tianyu Wo, Yaxiao Liu, Jie Xu","doi":"10.1145/2983323.2983667","DOIUrl":null,"url":null,"abstract":"Chauffeured car service based on mobile applications like Uber or Didi suffers from supply-demand disequilibrium, which can be alleviated by proper prediction on the distribution of passenger demand. In this paper, we propose a Zero-Grid Ensemble Spatio Temporal model (ZEST) to predict passenger demand with four predictors: a temporal predictor and a spatial predictor to model the influences of local and spatial factors separately, an ensemble predictor to combine the results of former two predictors comprehensively and a Zero-Grid predictor to predict zero demand areas specifically since any cruising within these areas costs extra waste on energy and time of driver. We demonstrate the performance of ZEST on actual operational data from ride-hailing applications with more than 6 million order records and 500 million GPS points. Experimental results indicate our model outperforms 5 other baseline models by over 10% both in MAE and sMAPE on the three-month datasets.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Chauffeured car service based on mobile applications like Uber or Didi suffers from supply-demand disequilibrium, which can be alleviated by proper prediction on the distribution of passenger demand. In this paper, we propose a Zero-Grid Ensemble Spatio Temporal model (ZEST) to predict passenger demand with four predictors: a temporal predictor and a spatial predictor to model the influences of local and spatial factors separately, an ensemble predictor to combine the results of former two predictors comprehensively and a Zero-Grid predictor to predict zero demand areas specifically since any cruising within these areas costs extra waste on energy and time of driver. We demonstrate the performance of ZEST on actual operational data from ride-hailing applications with more than 6 million order records and 500 million GPS points. Experimental results indicate our model outperforms 5 other baseline models by over 10% both in MAE and sMAPE on the three-month datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZEST:一种预测专车服务乘客需求的混合模型
基于优步或滴滴等移动应用的专车服务存在供需不均衡的问题,通过对乘客需求分布的合理预测可以缓解这一问题。在本文中,我们提出了一个零网格集成时空模型(zero - grid Ensemble Spatio Temporal model, ZEST)来预测乘客需求,该模型包含四个预测因子:时间预测因子和空间预测因子,分别对局部因素和空间因素的影响进行建模;集成预测因子将前两个预测因子的结果综合起来;零网格预测因子专门预测零需求区域,因为在这些区域内任何巡航都会浪费驾驶员的能量和时间。我们在超过600万个订单记录和5亿个GPS点的网约车应用的实际运营数据上展示了ZEST的性能。实验结果表明,在三个月的数据集上,我们的模型在MAE和sMAPE上都比其他5个基线模型高出10%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model Approximate Discovery of Functional Dependencies for Large Datasets Mining Shopping Patterns for Divergent Urban Regions by Incorporating Mobility Data A Personal Perspective and Retrospective on Web Search Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1