Deep Reinforcement Learning for Dynamic Bandwidth Allocation in Multi-Beam Satellite Systems

Shijun Ma, Xin Hu, Xianglai Liao, Weidong Wang
{"title":"Deep Reinforcement Learning for Dynamic Bandwidth Allocation in Multi-Beam Satellite Systems","authors":"Shijun Ma, Xin Hu, Xianglai Liao, Weidong Wang","doi":"10.1109/ICCCS52626.2021.9449160","DOIUrl":null,"url":null,"abstract":"Future multi-beam satellite (MBS) network is an essential part of the air-space-ground integrated network, which is the future blueprint of 6G. As the MBS network scales up, how to allocation scarce bandwidth spectrum resources efficiently and dynamically while ensuring the Quality of Service (QoS) of the users has become a great challenge. In this paper, we designed a dynamic bandwidth allocation framework using Proximal Policy Optimization (DBA-PPO) to meet the time-varying traffic demand, maximize utilization and guarantee the QoS of the users in the MBS system. The experimental results show that the proposed bandwidth allocation algorithm can be flexible to achieve the desired effectiveness with low complexity and is more cost-effective for the large scale MBS communications scenario.","PeriodicalId":376290,"journal":{"name":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS52626.2021.9449160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Future multi-beam satellite (MBS) network is an essential part of the air-space-ground integrated network, which is the future blueprint of 6G. As the MBS network scales up, how to allocation scarce bandwidth spectrum resources efficiently and dynamically while ensuring the Quality of Service (QoS) of the users has become a great challenge. In this paper, we designed a dynamic bandwidth allocation framework using Proximal Policy Optimization (DBA-PPO) to meet the time-varying traffic demand, maximize utilization and guarantee the QoS of the users in the MBS system. The experimental results show that the proposed bandwidth allocation algorithm can be flexible to achieve the desired effectiveness with low complexity and is more cost-effective for the large scale MBS communications scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多波束卫星系统动态带宽分配的深度强化学习
未来多波束卫星(MBS)网络是空-地一体化网络的重要组成部分,是6G的未来蓝图。随着MBS网络规模的不断扩大,如何在保证用户服务质量(QoS)的前提下高效、动态地分配稀缺的带宽频谱资源已成为一个巨大的挑战。为了满足MBS系统中时变的流量需求,最大限度地提高利用率,保证用户的服务质量,本文设计了一种基于近端策略优化(dma - ppo)的动态带宽分配框架。实验结果表明,所提出的带宽分配算法能够以较低的复杂度灵活地达到预期的带宽分配效果,并且对于大规模MBS通信场景具有更高的成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method of Measuring Data Fusion Based on EMBET Real Time Noise Power Estimation for Single Carrier Frequency Domain Equalization The CPDA Detector for the MIMO OCDM System A Cooperative Search Algorithm Based on Improved Particle Swarm Optimization Decision for UAV Swarm A Network Topology Awareness Based Probabilistic Broadcast Protocol for Data Transmission in Mobile Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1