{"title":"Programmable Logic Device (PLD) Safety Design Approach","authors":"Martin Chizek","doi":"10.56094/jss.v55i1.54","DOIUrl":null,"url":null,"abstract":"Programmable Logic Devices (PLDs) in ordnance fuze and ignition systems have well-defined design and verification requirements based on U.S. Department of Defense (DoD) Safety Review Board guidelines and military standards. However, there are few established safety design and verification requirements for PLDs used in non-fuze safety-significant applications. The primary objective of this paper is to (1) establish a process that assures that PLDs in products and systems are developed and tested to a level of rigor commensurate with the safety risk of the specified application, including fuze and non-fuze safety systems, and (2) to comply with recent guidance from DoD Software System Safety Technical Review Panels on firmware and programmable logic safety assurance. The paper’s secondary objective is to make the PLD safety process applicable to non-DoD and commercial programs such as autonomous vehicles, aerospace and energy systems. To meet this objective, this document incorporates best practices of NASA, commercial aviation, the Nuclear Regulatory Commission (NRC), and from international programmable electronic functional safety standards.","PeriodicalId":250838,"journal":{"name":"Journal of System Safety","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of System Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56094/jss.v55i1.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Programmable Logic Devices (PLDs) in ordnance fuze and ignition systems have well-defined design and verification requirements based on U.S. Department of Defense (DoD) Safety Review Board guidelines and military standards. However, there are few established safety design and verification requirements for PLDs used in non-fuze safety-significant applications. The primary objective of this paper is to (1) establish a process that assures that PLDs in products and systems are developed and tested to a level of rigor commensurate with the safety risk of the specified application, including fuze and non-fuze safety systems, and (2) to comply with recent guidance from DoD Software System Safety Technical Review Panels on firmware and programmable logic safety assurance. The paper’s secondary objective is to make the PLD safety process applicable to non-DoD and commercial programs such as autonomous vehicles, aerospace and energy systems. To meet this objective, this document incorporates best practices of NASA, commercial aviation, the Nuclear Regulatory Commission (NRC), and from international programmable electronic functional safety standards.