A functional network modeling approach for function series expansion

Qifang Luo, Yongquan Zhou, Xiuxi Wei
{"title":"A functional network modeling approach for function series expansion","authors":"Qifang Luo, Yongquan Zhou, Xiuxi Wei","doi":"10.1109/ICICISYS.2009.5357924","DOIUrl":null,"url":null,"abstract":"In this paper, a novel function series expansion method based on functional network model is proposed, and a functional network model for functions in several variables series expansion and learning algorithm are given, the learning of parameters of the functional networks is carried out by the solving linear equations. The simulation results show that the proposed approach is more efficient and feasible in function series expansion. By this algorithm, we only need the sample space of the original functions. So this algorithm has the value of application in industries.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5357924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel function series expansion method based on functional network model is proposed, and a functional network model for functions in several variables series expansion and learning algorithm are given, the learning of parameters of the functional networks is carried out by the solving linear equations. The simulation results show that the proposed approach is more efficient and feasible in function series expansion. By this algorithm, we only need the sample space of the original functions. So this algorithm has the value of application in industries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
函数级数展开的函数网络建模方法
本文提出了一种基于泛函网络模型的函数级数展开方法,给出了多变量函数级数展开的泛函网络模型和学习算法,通过求解线性方程实现了函数网络参数的学习。仿真结果表明,该方法在函数级数展开中具有较高的效率和可行性。通过该算法,我们只需要原始函数的样本空间。因此,该算法具有一定的工业应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm for the one-commodity pickup-and-delivery vehicle routing problem An intelligent model selection scheme based on particle swarm optimization A novel blind watermark algorithm based On SVD and DCT Optimization of machining parameters using estimation of distribution algorithms Optimal control analysis on a class of hybrid systems with impulses and switches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1