Temporal Models for Predicting Student Dropout in Massive Open Online Courses

Mi Fei, D. Yeung
{"title":"Temporal Models for Predicting Student Dropout in Massive Open Online Courses","authors":"Mi Fei, D. Yeung","doi":"10.1109/ICDMW.2015.174","DOIUrl":null,"url":null,"abstract":"Over the past few years, the rapid emergence of massive open online courses (MOOCs) has sparked a great deal of research interest in MOOC data analytics. Dropout prediction, or identifying students at risk of dropping out of a course, is an important problem to study due to the high attrition rate commonly found on many MOOC platforms. The methods proposed recently for dropout prediction apply relatively simple machine learning methods like support vector machines and logistic regression, using features that reflect such student activities as lecture video watching and forum activities on a MOOC platform during the study period of a course. Since the features are captured continuously for each student over a period of time, dropout prediction is essentially a time series prediction problem. By regarding dropout prediction as a sequence classification problem, we propose some temporal models for solving it. In particular, based on extensive experiments conducted on two MOOCs offered on Coursera and edX, a recurrent neural network (RNN) model with long short-term memory (LSTM) cells beats the baseline methods as well as our other proposed methods by a large margin.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192

Abstract

Over the past few years, the rapid emergence of massive open online courses (MOOCs) has sparked a great deal of research interest in MOOC data analytics. Dropout prediction, or identifying students at risk of dropping out of a course, is an important problem to study due to the high attrition rate commonly found on many MOOC platforms. The methods proposed recently for dropout prediction apply relatively simple machine learning methods like support vector machines and logistic regression, using features that reflect such student activities as lecture video watching and forum activities on a MOOC platform during the study period of a course. Since the features are captured continuously for each student over a period of time, dropout prediction is essentially a time series prediction problem. By regarding dropout prediction as a sequence classification problem, we propose some temporal models for solving it. In particular, based on extensive experiments conducted on two MOOCs offered on Coursera and edX, a recurrent neural network (RNN) model with long short-term memory (LSTM) cells beats the baseline methods as well as our other proposed methods by a large margin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模在线开放课程学生退学预测的时间模型
在过去的几年里,大规模在线开放课程(MOOC)的迅速兴起引发了对MOOC数据分析的大量研究兴趣。由于在许多MOOC平台上常见的高流失率,辍学预测或识别有辍学风险的学生是一个重要的研究问题。最近提出的辍学预测方法采用相对简单的机器学习方法,如支持向量机和逻辑回归,使用反映学生活动的特征,如在课程学习期间在MOOC平台上观看讲座视频和论坛活动。由于在一段时间内连续捕获每个学生的特征,因此辍学预测本质上是一个时间序列预测问题。将dropout预测视为一个序列分类问题,提出了求解该问题的时间模型。特别是,基于在Coursera和edX上提供的两个mooc上进行的大量实验,具有长短期记忆(LSTM)细胞的递归神经网络(RNN)模型大大优于基线方法以及我们提出的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1