Global warp metric distance: boosting content-based image retrieval through histograms

J. C. Felipe, A. Traina, C. Traina
{"title":"Global warp metric distance: boosting content-based image retrieval through histograms","authors":"J. C. Felipe, A. Traina, C. Traina","doi":"10.1109/ISM.2005.64","DOIUrl":null,"url":null,"abstract":"This work presents a new distance function - the global warp metric distance - to compare histograms used as a feature to index image databases in content based image retrieval environments. The metric histogram represents a compact, but efficient alternative to the use of traditional gray level histograms to represent images. The global warp metric distance (GWMD) enhances the comparison between histograms, replacing the rigid bin to bin evaluation by the warp method, which allows a local \"adjustment\" of one histogram to the other during the distance calculation, introducing a global matching of the curves. Besides this, GWMD applies a set of geometric global features of histograms to determine the final distance. Results on similarity retrieval in medical images demonstrate the superiority of the proposed approach in analyzing image sets that present brightness and contrast disparities: it reduces the amount of both false positive and false negative retrievals. Moreover, these results comply with similarity evaluations performed by domain specialists.","PeriodicalId":322363,"journal":{"name":"Seventh IEEE International Symposium on Multimedia (ISM'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Symposium on Multimedia (ISM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2005.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This work presents a new distance function - the global warp metric distance - to compare histograms used as a feature to index image databases in content based image retrieval environments. The metric histogram represents a compact, but efficient alternative to the use of traditional gray level histograms to represent images. The global warp metric distance (GWMD) enhances the comparison between histograms, replacing the rigid bin to bin evaluation by the warp method, which allows a local "adjustment" of one histogram to the other during the distance calculation, introducing a global matching of the curves. Besides this, GWMD applies a set of geometric global features of histograms to determine the final distance. Results on similarity retrieval in medical images demonstrate the superiority of the proposed approach in analyzing image sets that present brightness and contrast disparities: it reduces the amount of both false positive and false negative retrievals. Moreover, these results comply with similarity evaluations performed by domain specialists.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全局翘曲度量距离:通过直方图增强基于内容的图像检索
这项工作提出了一个新的距离函数-全局扭曲度量距离-来比较直方图作为一个特征来索引基于内容的图像检索环境中的图像数据库。度量直方图代表了一种紧凑,但有效的替代使用传统的灰度直方图来表示图像。全局warp度量距离(GWMD)增强了直方图之间的比较,用warp方法取代了刚性的bin到bin评估,允许在距离计算过程中局部“调整”一个直方图到另一个直方图,引入曲线的全局匹配。此外,GWMD应用直方图的一组几何全局特征来确定最终距离。医学图像相似性检索的结果表明,该方法在分析存在亮度和对比度差异的图像集方面具有优越性:它减少了假阳性和假阴性检索的数量。此外,这些结果符合领域专家进行的相似性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting low-cost video-on-demand in heterogeneous peer-to-peer networks Striping delay-sensitive packets over multiple burst-loss channels with random delays An ontology learning method enhanced by frame semantics BIOGLYPH: biometric identification in pervasive environments Key distributions as musical fingerprints for similarity assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1