Assessment of launch vehicle debris risk during ascent aborts

K. Gee, D. Mathias
{"title":"Assessment of launch vehicle debris risk during ascent aborts","authors":"K. Gee, D. Mathias","doi":"10.1109/rams.2008.4925772","DOIUrl":null,"url":null,"abstract":"In the event of a space launch vehicle explosion during ascent, the debris field generated by the explosion poses a risk to the crew. To evaluate this risk, a model of the debris environment was created and used to determine the probability of a debris strike on the crew module. The model uses experimental data to determine the initial debris field due to a launch vehicle explosion and computes the trajectory of each piece of debris. The trajectory of the crew module after the abort is also computed. The relative position of the debris field and the crew module is determined as a function of time after abort and explosion. A debris flux about the crew module is computed based on this information. The debris flux is used to compute the probability of a debris strike on the crew module using the Poisson distribution. The effect of system and model parameters - such as warning time, the number of debris pieces and abort system thrust- on the debris strike probability is assessed.","PeriodicalId":143940,"journal":{"name":"2008 Annual Reliability and Maintainability Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual Reliability and Maintainability Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rams.2008.4925772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In the event of a space launch vehicle explosion during ascent, the debris field generated by the explosion poses a risk to the crew. To evaluate this risk, a model of the debris environment was created and used to determine the probability of a debris strike on the crew module. The model uses experimental data to determine the initial debris field due to a launch vehicle explosion and computes the trajectory of each piece of debris. The trajectory of the crew module after the abort is also computed. The relative position of the debris field and the crew module is determined as a function of time after abort and explosion. A debris flux about the crew module is computed based on this information. The debris flux is used to compute the probability of a debris strike on the crew module using the Poisson distribution. The effect of system and model parameters - such as warning time, the number of debris pieces and abort system thrust- on the debris strike probability is assessed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上升中止过程中运载火箭碎片风险评估
如果航天运载火箭在上升过程中发生爆炸,爆炸产生的碎片区会对乘员构成威胁。为了评估这种风险,创建了一个碎片环境模型,并用于确定碎片撞击乘员舱的概率。该模型利用实验数据确定运载火箭爆炸产生的初始碎片场,并计算每块碎片的轨迹。中止后乘员舱的轨迹也被计算出来。碎片场和乘员舱的相对位置作为中止和爆炸后时间的函数确定。乘员舱周围的碎片通量是根据这些信息计算出来的。碎片通量用于利用泊松分布计算碎片撞击乘员舱的概率。评估了预警时间、碎片数量和中止系统推力等系统参数和模型参数对碎片撞击概率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
What's wrong with bent pin analysis, and what to do about it A systems reliability approach to decision making in autonomous multi-platform systems operating a phased mission Software tools for PRA Optimal highway maintenance policies under uncertainty Reliability analysis of phased-mission systems using Bayesian networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1