Toward neuromorphic intelligent brain-machine interfaces: An event-based neural recording and processing system

Federico Corradi, D. Bontrager, G. Indiveri
{"title":"Toward neuromorphic intelligent brain-machine interfaces: An event-based neural recording and processing system","authors":"Federico Corradi, D. Bontrager, G. Indiveri","doi":"10.1109/BioCAS.2014.6981793","DOIUrl":null,"url":null,"abstract":"We present an analog neural recording front-end design that can be easily interfaced with Address-Event Representation (AER) neuromorphic systems via an asynchronous digital communication channel. The proposed circuits include a low-noise amplifier for biological signals, a delta-modulator analog-to-digital converter, and a low-power bandpass filter. The bio-amplifier has a gain of 54 dB, with an Root Mean Squared (RMS) input-referred noise level of 2.1 μV, and consumes 90 μW. The bandpass filter and delta-modulator circuits include asynchronous handshaking interface logic compatible with the AER communication protocol. We describe the circuits, present experimental measurements to demonstrate their response properties and show how they can be used in conjunction with neuromorphic computing architectures to implement decoding and learning functions useful for Brain-Machince Interfaces (BMIs).","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present an analog neural recording front-end design that can be easily interfaced with Address-Event Representation (AER) neuromorphic systems via an asynchronous digital communication channel. The proposed circuits include a low-noise amplifier for biological signals, a delta-modulator analog-to-digital converter, and a low-power bandpass filter. The bio-amplifier has a gain of 54 dB, with an Root Mean Squared (RMS) input-referred noise level of 2.1 μV, and consumes 90 μW. The bandpass filter and delta-modulator circuits include asynchronous handshaking interface logic compatible with the AER communication protocol. We describe the circuits, present experimental measurements to demonstrate their response properties and show how they can be used in conjunction with neuromorphic computing architectures to implement decoding and learning functions useful for Brain-Machince Interfaces (BMIs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向神经形态智能脑机接口:一种基于事件的神经记录与处理系统
我们提出了一种模拟神经记录前端设计,可以通过异步数字通信通道轻松地与地址-事件表示(AER)神经形态系统接口。所提出的电路包括一个用于生物信号的低噪声放大器、一个增量调制器模数转换器和一个低功率带通滤波器。该生物放大器增益为54 dB,输入参考噪声均方根(RMS)为2.1 μV,功耗为90 μW。带通滤波器和增量调制器电路包括与AER通信协议兼容的异步握手接口逻辑。我们描述了这些电路,提出了实验测量来证明它们的响应特性,并展示了它们如何与神经形态计算架构结合使用,以实现对脑机接口(bmi)有用的解码和学习功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guidewire insertion planning for extracapsular hip fracture surgery A compact ECoG system with bidirectional capacitive data telemetry Omnidirectional wireless power combination harvest for wireless endoscopy Database-driven artifact detection method for EEG systems with few channels (DAD) ESL design of customizable real-time neuron networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1