Joni O. Salminen, Hind Almerekhi, A. Kamel, Soon-Gyo Jung, B. Jansen
{"title":"Online Hate Ratings Vary by Extremes: A Statistical Analysis","authors":"Joni O. Salminen, Hind Almerekhi, A. Kamel, Soon-Gyo Jung, B. Jansen","doi":"10.1145/3295750.3298954","DOIUrl":null,"url":null,"abstract":"Analyzing 5,665 crowd ratings on 1,133 social media comments, we find that individuals tend to agree on the extremes of a hate rating scale more than in the middle when evaluating the hatefulness of online comments. The agreement is higher for less hateful comments and lowest on moderately hateful comments. The results have implications for researchers developing machine learning models for online hate processing, as the extreme classes are likely to require fewer annotations for reaching statistical stability. Our findings suggest that the models developed in this domain should consider the distributions of hate ratings rather than average hate scores.","PeriodicalId":187771,"journal":{"name":"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3295750.3298954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
Analyzing 5,665 crowd ratings on 1,133 social media comments, we find that individuals tend to agree on the extremes of a hate rating scale more than in the middle when evaluating the hatefulness of online comments. The agreement is higher for less hateful comments and lowest on moderately hateful comments. The results have implications for researchers developing machine learning models for online hate processing, as the extreme classes are likely to require fewer annotations for reaching statistical stability. Our findings suggest that the models developed in this domain should consider the distributions of hate ratings rather than average hate scores.