GWO based tuning of PID controller for a heat exchanger process

K. Anbumani, DR. R. Ranihemamalini, DR. G. Pechinathan
{"title":"GWO based tuning of PID controller for a heat exchanger process","authors":"K. Anbumani, DR. R. Ranihemamalini, DR. G. Pechinathan","doi":"10.1109/SSPS.2017.8071631","DOIUrl":null,"url":null,"abstract":"In this paper design of controller for a heat exchanger is proposed by using evolutionary algorithm. It is used to find the Grey wolf optimization is one the evolutionary algorithm for better controller tuning. The tuning of PID controller is done by GWO and the simulation are conducted for first order transfer function model of heat exchanger. The performance indices are measured and the measured performance indices are compared with particle swarm optimization technique. From the comparison we realized GWO gave the better optimization for the heat exchanger process.","PeriodicalId":382353,"journal":{"name":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPS.2017.8071631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper design of controller for a heat exchanger is proposed by using evolutionary algorithm. It is used to find the Grey wolf optimization is one the evolutionary algorithm for better controller tuning. The tuning of PID controller is done by GWO and the simulation are conducted for first order transfer function model of heat exchanger. The performance indices are measured and the measured performance indices are compared with particle swarm optimization technique. From the comparison we realized GWO gave the better optimization for the heat exchanger process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GWO的换热过程PID控制器整定
本文提出了一种基于进化算法的换热器控制器设计方法。通过对灰狼优化算法的研究,发现灰狼优化算法是一种较好的控制器整定进化算法。利用GWO对PID控制器进行整定,并对换热器的一阶传递函数模型进行仿真。对所得到的性能指标进行了实测,并与粒子群优化技术进行了比较。通过比较,发现GWO对换热器工艺优化效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart industry pollution monitoring and controlling using LabVIEW based IoT Compact circular ring shaped monopole UWB MIMO antenna Performance analysis of supervised machine learning techniques for sentiment analysis Vehicle network security testing Energy efficient routing in mobile Ad-hoc network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1